Atas I, Ozdemir C, Atas M, Dogan Y (2022) Forensic dental age estimation using modified deep learning neural network. https://doi.org/10.48550/arXiv.2208.09799
Banar N, Bertels J, Laurent F, Boedi RM, De Tobel J, Thevissen P, Vandermeulen D (2020) Towards fully automated third molar development staging in panoramic radiographs. Int J Legal Med 134:1831–1841. https://doi.org/10.1007/s00414-020-02283-3
Article
PubMed
Google Scholar
Cameriere R, Ferrante L, Cingolani M (2006) Age estimation in children by measurement of open apices in teeth. Int J Legal Med 120:49–52. https://doi.org/10.1007/s00414-005-0047-9
Article
PubMed
Google Scholar
Cameriere R, Ferrante L, De Angelis D, Scarpino F, Galli F (2008) The comparison between measurement of open apices of third molars and Demirjian stages to test chronological age of over 18 year olds in living subjects. Int J Legal Med 122:493–497
Article
CAS
PubMed
Google Scholar
Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F (2020) Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent 100:103425. https://doi.org/10.1016/j.jdent.2020.103425
Article
PubMed
Google Scholar
Chandramohan P, Puranik MP, Rajagopalachari US (2015) Dental age estimation methods-a review. LAP LAMBERT Academic Publishing
Google Scholar
de Oliveira FT, Capelozza ALÁ, Lauris JRP, de Bullen IRFR (2012) Mineralization of mandibular third molars can estimate chronological age--Brazilian indices. Forensic Sci Int 219:147–150. https://doi.org/10.1016/j.forsciint.2011.12.013
Article
PubMed
Google Scholar
De Tobel J, Radesh P, Vandermeulen D, Thevissen PW (2017) An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J Forensic Odontostomatol 35:42–54
PubMed
PubMed Central
Google Scholar
Demircioğlu A, Quinsten AS, Forsting M, Umutlu L, Nassenstein K (2022) Pediatric age estimation from radiographs of the knee using deep learning. Eur Radiol 32:4813–4822. https://doi.org/10.1007/s00330-022-08582-0
Article
PubMed
PubMed Central
Google Scholar
Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45:211–227
CAS
PubMed
Google Scholar
Dhanjal KS, Bhardwaj MK, Liversidge HM (2006) Reproducibility of radiographic stage assessment of third molars. Forensic Sci Int 159(Suppl 1):S74–S77. https://doi.org/10.1016/j.forsciint.2006.02.020
Article
PubMed
Google Scholar
Dollár P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. IEEE Transact Pattern Anal Machine Intelligence 36:1532–1545. https://doi.org/10.1109/TPAMI.2014.2300479
Article
Google Scholar
Duangto P, Iamaroon A, Prasitwattanaseree S, Mahakkanukrauh P, Janhom A (2017) New models for age estimation and assessment of their accuracy using developing mandibular third molar teeth in a Thai population. Int J Legal Med 131:559–568. https://doi.org/10.1007/s00414-016-1467-4
Article
CAS
PubMed
Google Scholar
Girshick R (2015) Fast R-CNN, in: 2015 IEEE International Conference on Computer Vision (ICCV). In: Presented at the 2015 IEEE International Conference on Computer Vision (ICCV), pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169
Chapter
Google Scholar
Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition. Presented at the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. https://doi.org/10.1109/CVPR.2014.81
Hassanali J (1985) The third permanent molar eruption in Kenyan Africans and Asians. Ann Hum Biol 12:517–523. https://doi.org/10.1080/03014468500008091
Article
CAS
PubMed
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
Hou, W., Liu, L., Gao, J., Zhu, A., Pan, K., Sun, H., Zheng, N., 2021. Exploring effective DNN models for forensic age estimation based on panoramic radiograph images, in: 2021 International Joint Conference on Neural Networks (IJCNN). Presented at the 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533672
Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd International Conference on Learning Representations, ICLR 2015. Conference Track Proceedings, San Diego. https://doi.org/10.48550/arXiv.1412.6980
Chapter
Google Scholar
Kvaal SI, Kolltveit KM, Thomsen IO, Solheim T (1995) Age estimation of adults from dental radiographs. Forensic Sci Int 74:175–185. https://doi.org/10.1016/0379-0738(95)01760-g
Article
CAS
PubMed
Google Scholar
Lakshmi M, Chitra P (2020) Classification of dental cavities from X-ray images using deep CNN algorithm. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). https://doi.org/10.1109/ICOEI48184.2020.9143013
Book
Google Scholar
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174
Article
CAS
PubMed
Google Scholar
Lee S, Oh S, Jo J, Kang S, Shin Y, Park J (2021) Deep learning for early dental caries detection in bitewing radiographs. Sci Rep 11:16807. https://doi.org/10.1038/s41598-021-96368-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Huang Z, Dong X, Liang W, Xue H, Zhang L, Zhang Y, Deng Z (2019) Forensic age estimation for pelvic X-ray images using deep learning. Eur Radiol 29:2322–2329. https://doi.org/10.1007/s00330-018-5791-6
Article
PubMed
Google Scholar
Lian L, Zhu T, Zhu F, Zhu H (2021) Deep learning for caries detection and classification. Diagnostics 11:1672. https://doi.org/10.3390/diagnostics11091672
Article
PubMed
PubMed Central
Google Scholar
Malatong Y, Palee P, Sinthubua A, Na Lampang S, Mahakkanukrauh P (2022) Estimating age from digital radiographic images of lumbar vertebrae in a Thai population using an image analysis technique. Med Sci Law 62:180–187. https://doi.org/10.1177/00258024211062027
Article
PubMed
Google Scholar
Megalan Leo L, Kalpalatha Reddy T (2020) Dental caries classification system using deep learning based convolutional neural network. J Comput Theoretical Nanosci 17:4660–4665. https://doi.org/10.1166/jctn.2020.9295
Article
CAS
Google Scholar
Megalan Leo L, Kalpalatha Reddy T (2021) Learning compact and discriminative hybrid neural network for dental caries classification. Microprocess Microsyst 82:103836. https://doi.org/10.1016/j.micpro.2021.103836
Article
Google Scholar
Merdietio Boedi R, Banar N, De Tobel J, Bertels J, Vandermeulen D, Thevissen PW (2020) Effect of lower third molar segmentations on automated tooth development staging using a convolutional neural network. J Forensic Sci 65:481–486. https://doi.org/10.1111/1556-4029.14182
Article
PubMed
Google Scholar
Milošević D, Vodanović M, Galić I, Subašić M (2022) Automated estimation of chronological age from panoramic dental X-ray images using deep learning. Expert Syst Applications 189:116038. https://doi.org/10.1016/j.eswa.2021.116038
Article
Google Scholar
Nolla CM (1960) The development of permanent teeth. J Dent Children 27:254–266
Google Scholar
Olze A, Schmeling A, Taniguchi M, Maeda H, van Niekerk P, Wernecke K-D, Geserick G (2004) Forensic age estimation in living subjects: the ethnic factor in wisdom tooth mineralization. Int J Legal Med 118:170–173. https://doi.org/10.1007/s00414-004-0434-7
Article
PubMed
Google Scholar
Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Transact Knowledge Data Eng 22:1345–1359. https://doi.org/10.1109/TKDE.2009.191
Article
Google Scholar
Pan X, Zhao Y, Chen H, Wei D, Zhao C, Wei Z (2020) Fully automated bone age assessment on large-scale hand X-ray dataset. Int J Biomed Imaging 2020:e8460493. https://doi.org/10.1155/2020/8460493
Article
Google Scholar
Panchbhai AS (2011) Dental radiographic indicators, a key to age estimation. Dentomaxillofac Radiol 40:199–212. https://doi.org/10.1259/dmfr/19478385
Article
CAS
PubMed
PubMed Central
Google Scholar
Panyarak W, Wantanajittikul K, Suttapak W, Charuakkra A, Prapayasatok S (2022) Feasibility of deep learning for dental caries classification in bitewing radiographs based on the ICCMSTM radiographic scoring system. Oral Surg Oral Med Oral Pathol Oral Radiol 0. https://doi.org/10.1016/j.oooo.2022.06.012
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: unified, real-time object detection, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788. https://doi.org/10.1109/CVPR.2016.91
Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). In: Presented at the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 6517–6525. https://doi.org/10.1109/CVPR.2017.690
Chapter
Google Scholar
Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement. ArXiv. https://doi.org/10.48550/arXiv.1804.02767
Remy F, Saliba-Serre B, Chaumoitre K, Martrille L, Lalys L (2021) Age estimation from the biometric information of hand bones: development of new formulas. Forensic Sci Int 322:110777. https://doi.org/10.1016/j.forsciint.2021.110777
Article
PubMed
Google Scholar
Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks, in: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, NIPS’15. MIT Press, Cambridge, pp 91–99. https://doi.org/10.48550/arXiv.1506.01497
Book
Google Scholar
Ribier L, Saint-Martin P, Seignier M, Paré A, Brunereau L, Rérolle C (2020) Cameriere’s third molar maturity index in assessing age of majority: a study of a French sample. Int J Legal Med 134:783–792. https://doi.org/10.1007/s00414-019-02123-z
Article
PubMed
Google Scholar
Sattarath P, Wantanajittikul K, Prasitwattanaseree S, Settakorn J, Mekjaidee K (2021) Age related lumbar trabecular bone in a Thai population. CMUJNS:20. https://doi.org/10.12982/CMUJNS.2021.069
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization, in: 2017 IEEE International Conference on Computer Vision (ICCV). In: Presented at the 2017 IEEE International Conference on Computer Vision (ICCV), pp 618–626. https://doi.org/10.1109/ICCV.2017.74
Chapter
Google Scholar
Suttapak W, Panyarak W, Jira-apiwattana D, Wantanajittikul K (2022) A unified convolution neural network for dental caries classification. ECTI Transact Comp Inform Technol (ECTI-CIT) 16:186–195. https://doi.org/10.37936/ecti-cit.2022162.245901
Article
Google Scholar
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594
Book
Google Scholar
Thevissen PW, Pittayapat P, Fieuws S, Willems G (2009) Estimating age of majority on third molars developmental stages in young adults from Thailand using a modified scoring technique*. J Forensic Sci 54:428–432. https://doi.org/10.1111/j.1556-4029.2008.00961.x
Article
PubMed
Google Scholar
Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Transact Med Imaging 28:52–66. https://doi.org/10.1109/TMI.2008.926067
Article
Google Scholar
Thodberg HH, van Rijn RR, Jenni OG, Martin DD (2017) Automated determination of bone age from hand X-rays at the end of puberty and its applicability for age estimation. Int J Legal Med 131:771–780. https://doi.org/10.1007/s00414-016-1471-8
Article
PubMed
Google Scholar
Upalananda W, Wantanajittikul K, Lampang SN, Janhom A (2021) Semi-automated technique to assess the developmental stage of mandibular third molars for age estimation. Aust J Forensic Sci 0:1–11. https://doi.org/10.1080/00450618.2021.1882570
Article
Google Scholar
Verochana K, Prapayasatok S, Janhom A, Mahasantipiya PM, Korwanich N (2016) Accuracy of an equation for estimating age from mandibular third molar development in a Thai population. Imaging Sci Dent 46:1–7. https://doi.org/10.5624/isd.2016.46.1.1
Article
PubMed
PubMed Central
Google Scholar
Vila-Blanco N, Carreira MJ, Varas-Quintana P, Balsa-Castro C, Tomás I (2020) Deep neural networks for chronological age estimation from OPG images. IEEE Transact Med Imaging 39:2374–2384. https://doi.org/10.1109/TMI.2020.2968765
Article
Google Scholar
Vinayahalingam S, Kempers S, Limon L, Deibel D, Maal T, Bergé S, Xi T, Hanisch M (2021) The automatic detection of caries in third molars on panoramic radiographs using deep learning: a pilot study. https://doi.org/10.21203/RS.3.RS-379636/V1
Zaborowicz K, Biedziak B, Olszewska A, Zaborowicz M (2021) Tooth and bone parameters in the assessment of the chronological age of children and adolescents using neural modelling methods. Sensors 21:6008. https://doi.org/10.3390/s21186008
Article
PubMed
PubMed Central
Google Scholar
Zaborowicz M, Zaborowicz K, Biedziak B, Garbowski T (2022) Deep learning neural modelling as a precise method in the assessment of the chronological age of children and adolescents using tooth and bone parameters. Sensors (Basel) 22:637. https://doi.org/10.3390/s22020637
Article
PubMed
Google Scholar