Monosodium Glutamate (MSG) is one of the world’s most extensively used food additives which is ingested as part of commercially processed foods (Husarova & Ostatnikova, 2013).
In 1958 the U.S. Food and Drug Administration (FDA) designated MSG as a Generally Recognized As Safe (GRAS) ingredient, along with many other common food ingredients such as salt, vinegar and baking powder (International Food Information Council Foundation IFICF, 2001).
The glutamate industry often uses flavors in ingredients labeled “flavor,” or “flavoring,” (this preceded by the word “natural”). They use “reaction flavors” as “clean label” alternatives to the use of “monosodium glutamate”. The consumers rarely know that “Clean label” can include MSG (Truth in Labeling, 2007).
The young children are usually at risk from MSG. Their blood brain barrier is not fully developed; and cannot protect against toxins. In addition, glutamic acid can penetrate the placental barrier. Companies use glutamic acid because it is cheap, and since it is neurotoxic, manufacturers continue to go on using it and do not want the public to know that. (NOHA, 2008).
In the current study, rats of group II (high dose) showed a significant increase in their body weights compared to the control group (Group I) in the first week of the study. This was followed by reduction in body weight in the second and third weeks followed by another increase in their weight in the last week. However, there was no significant difference in weight between group II and control by the end of the study (p > 0.05). The reduction in body weight that was noted in the second and third week agrees with other studies that also reported reduction in body weight gain in animals treated with MSG (). The increase in weight in the last week can be attributed to the urinary retention (full bladder was noted upon dissecting all the animas of this group (Group II).
Rats in group III (low dose) showed a significant increase in body weight compared to control group (p < 0.05). This is concordant with Alalwani, 2014 (Alalwani, 2014) who reported a significant weight gain in MSG treated rats (single daily dose 30 or 60 mg/kg intra-peritoneal injection for 2 months). Another supporting study reported that MSG treated rats (subcutaneous injection of 4 g MSG/ kg body weight /day] presented higher body weights than the control rats, despite the fact that treated rats were found to be hypophagic, presenting lower average daily food consumption (de Oliveira Lazarin et al., 2011). The different effect of MSG on body weight might be due to the variations in dose regimen and perhaps to different periods or duration of exposure and the type or strain of the animals used in these studies. Although MSG could improve the palatability of foods by exerting a positive influence on the appetite center (Alalwani, 2014). Its main effect on body weight is by increasing mRNA expression of interleukin-6, tumor necrosis factor-alpha, resistin and leptin in visceral adipose tissue, it increased insulin, resistin and leptin levels in serum and it also impaired glucose tolerance. The ingested glutamate also exerts a local effect; its presence in gastrointestinal tract activate both the gastric and the celiac branches of the vagus nerve led to the activation of the insular cortex, limbic system, hypothalamus and nucleus tractus solitaries (Husarova & Ostatnikova, 2013).
Rats exposed to MSG (group II and III) in the present study showed decline in their learning capabilities and short memory as observed from their performance in the radial arm maze test. However the cognitive affection was much more obvious in the group receiving the higher dose. This finding is also supported by earlier studies (Ali et al., 2000; Olvera-Cortes et al., 2005; Porsolt et al., 1979). Onaolapo et al., 2017, concluded that in their study MSG associated with changes in open field activities, anxiety-related behaviors and brain glutamate/glutamine levels; its ingestion leads to a stimulation of the brain reward system (Onaolapo et al., 2017).
The hippocampus in the forebrain plays a major role in controlling memory and regulating learning functions and thinking (Compton, 2004). Thus the decline in cognitive functions in animals exposed to MSG, as observed in the study, could be due to its neurotoxic effect on forebrain neurons including the hippocampus. Decline in the cognitive function can also be explained by alteration in brain neurotransmitters such as serotonin, dopamine, norepinephrine and acetylcholine (Husain & Mehta, 2011).
Among different neurotransmitters, serotonergic alterations have been implicated in cognitive alterations, and low extracellular serotonin levels seem to be associated with impaired learning and memory consolidation (Ramos-Rodriguez et al., 2013). In the present study only the animals exposed to high dose (Group II) MSG showed significant decrease (p < 0.05) in the levels of the neurotransmitter; serotonin in brain tissue as well as in serum. In support of the involvement of serotonergic mechanisms in MSG induced toxicity, a study has tested the MSG induced lethality (MSG; 6–10 g/kg, intra-peritoneal) in mice after adding drugs that depletes serotonin stores, this resulted in an increase in MSG-induced lethality (Kamei et al., 1991). In agreement with that, L-glutamic acid was reported to decrease serotonin synthesis, release in rat rostral and caudal rhombencephalic raphe cells culture and cause an increase in serotonin metabolism (Becquet et al., 1993). In another study; subcutaneous injection of MSG in newborn rats (4 g/kg/day from the 1st to 5th postnatal day) results in an increase in the serotonin uptake in cerebral cortices (Quines et al., 2014).
On the other hand animals in Group III (low dose) didn’t show a statistically significant decrease in forebrain serotonin levels compared to control group. The obtained data from Group III are in agreement with the study by (Dawson, 1983) where adult female mice were injected intra-peritoneal with MSG (4 mg/g) and decapitated 30 min later, for measuring serotonin levels in their brain tissue, the results showed no significant alteration in the brain level of serotonin compared to control group. MSG administration (at a dose of 8 mg/kg body weight/day, dissolved in drinking water for 1 month) to mice also showed no significant alteration in the brain level of serotonin (Porsolt et al., 1979).
The optimal palatability concentration for MSG is between 0.2–0.8% (w/w) and its use tends to be self-limiting as over-use decreases its palatability (Löliger, 2000). The limit of added MSG to food products established by European Directive is 10 g/kg (1%) of product or prepared food (European Parliament and Council Directive, 1995).
Hashem et al., 2012 in their study agreed with this study about the dangerous effects of MSG on brain, they concluded that MSG has neurotoxic effect leading to degenerative changes in neurons and astrocytes in cerebellar cortex of albino rats (Hashem et al., 2012).
Also, Umukoro et al., 2015 proved that low dose of MSG given orally to mice did not produce significant impairment in the Y maze test but produce depressive like symptoms in the forced swim test at dose of 500 mg/kg, and increased the levels of malondialdehyde (MDA) and decreased the level of glutathione (GSH) concentration in brain tissue (Umukoro et al., 2015).
Prastiwi et al., 2015 found that the administration of MSG at a high dose of 3.5 mg/g body weight, but not at lower dosages, lead to significant decrease of motor coordination and the estimated total number of Purkinje cells of rats and significant correlation between motor coordination and the total number of Purkinje cells (Prastiwi et al., 2015).
This study was conducted to determine the monosodium glutamate content of selected food samples from market in Assiut city. Three different samples were selected these include; Kabsa rice spices, Indomie noodles; chicken flavor and Potato chips (Kabab flavor). Estimation of monosodium glutamate was carried out by modified HPLC (High Performance Liquid Chromatography). The results from laboratory analysis concluded that MSG was present, altogether in the three samples with the following values; 135.5 g/100 g (1.35%), 733.5 g/100 g (7.33%) and 210.2 g/100 g (2.1%), respectively.
In case of spices, they are used to prepare 0.5–1.0 kg meat or rice and so the MSG was diluted 10 times (Lateef et al., 2012), so the estimated percent of MSG decreases to 0.135% in prepared food which lie within the optimal palatability concentration i.e. 0.2–0.8% as suggested by (Löliger, 2000). However in the other two samples; Indomie (7.33%) & potato chips (2.1%), the estimated MSG levels exceed the allowable limit per serving (1% of product or prepared food as stated by (European Parliament and Council Directive, 1995).
Another studies measured MSG levels in different food staffs using HPLC; in one of the reports, quantification of MSG in hamburgers commercially available in Argentine markets was 0.1–0.2% (w/w) (Rodriguez et al., 2003). In another study, a survey on free glutamic acid content in a variety of foods (broths, soups, sauces and salad dressings), with and without added monosodium glutamate (MSG), broths and soups with added MSG had free glutamic acid contents of 0.266–0.753%. The highest amounts of free glutamic acid in foods with no added MSG were found in products containing hydrolyzed proteins 0.12% (Populin et al., 2007). Lateef et al. (Lateef et al., 2012), used a modified HPLC method to quantify MSG in Pakistani spices using single organic mobile phase. The MSG concentration in different spice samples were was found in the range of 2.7–8.8%. Another study was conducted to determine the monosodium glutamate content of selected traditional meat dishes. Six traditional meat dishes were selected from five different restaurant of Lahore. The dishes included were chicken karahi, mutton qorma, chicken biryani, seekh kabbab, chicken tikkah, palak gosht, the estimated levels of MSG in all the meat dishes ranges from 0.2–0.8% (Mustafa et al., 2015).