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Abstract 

Background  Cyclophosphamide (CP) is a chemotherapeutic and immunosuppressive agent that induces oxidative 
stress, causing lung tissue damage.

Aim  The study aims to explore the antioxidant role of tert-butylhydroquinone (TBHQ) in ameliorating CP-induced 
lung toxicity exhibited as oxidative stress and programmed cell death.

Methods  Thirty-two adult male rats were allocated randomly into four groups: group 1 (control), group 2 TBHQ 
50 mg/kg orally for 14 days, and group 3 single dose of (200 mg/kg, CP, i.p.) on the 9th day. In group 4, TBHQ (50 mg/
kg, orally) was provided for 14 days, and (200 mg/kg, CP, i.p.) was administrated on the 9th day. Rats’ body and lung 
weight were measured. Oxidative stress marker malondialdehyde (MDA) and pulmonary tissue enzymatic antioxidant 
levels were assessed: glutathione S transferase, catalase, superoxide dismutase, and glutathione peroxidase. Addition-
ally, glutathione level was measured. Assessment of the levels of TNF-α, IL-1β, and IL-6 were done as well as histo-
pathological and immunohistochemistry investigations. Molecular docking studies of the protein structures of p53-
MDM2, IL-6, and IL-1β were performed.

Results  CP-intoxicated rats demonstrated a significant decline (CAT, GPx, SOD, GST, and GSH) levels and a significant 
increase in MDA levels. The proinflammatory parameters (TNF-α, IL-6, IL-1ß) were significantly elevated in group 3. The 
noted biochemical changes, accompanied by histopathological destruction, indicate CP-induced pulmonary tissue 
injury. TBHQ played a protective role by attenuating most of the aforementioned biochemical alterations and histo-
pathological distortions in rats’ lungs.

Conclusions  TBHQ might be utilized as a potential ameliorative agent to inhibit CP-induced pulmonary toxicity 
via TBHQ’s antioxidant and anti-inflammatory effects.
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Background
Cytotoxic drugs are known to damage different tissues 
following systemic administration. Pulmonary toxicity 
caused by antineoplastic agents is a significant cause of 
respiratory failure (Kanno et  al. 2009; Vahid and Marik 
2008). Cyclophosphamide (CP) is a potent chemothera-
peutic and immunosuppressive agent widely used to 
treat a variety of serious health conditions (de Jonge 
et al. 2005). Cyclophosphamide has proven to be associ-
ated with various toxicities (Ayza et al. 2022; Emadi et al. 
2009), including nephrotoxicity (Salama et  al. 2022), 
gonadal toxicity (Kim and Chan 2017), hepatotoxicity 
(Devi and Mazumder 2016), teratogenicity, cardiotoxic-
ity, and pulmonary toxicity (Said et al. 2016). CP known 
as an alkylating agent of nitrogen mustard was first syn-
thesized by Arnold et al. in 1958 (Arnold et al. 1958; Ayza 
et al. 2022). CP is considered a prodrug, and cytochrome-
P450 is needed for metabolic activation (Kachel and 
Martin 1994; de Jonge et al. 2005).

The hydroxylation of CP by P450 enzymes results in 2 
4-hydroxycyclophosphamide (OHCP) and 3 aldophos-
phamide (ALDO). OHCP is converted by enzymatic oxi-
dation into the non-cytotoxic 4-ketocyclophosphamide 
(KCP). While ALDO is detoxified by aldehyde dehy-
drogenases into the cytotoxically inactive carboxyphos-
phamide (CARB) and to acrolein by bicarbonate ions 
(Voelcker 2020). The main active metabolites of CP are 
phosphoramide mustard, acrolein, and chloroacetalde-
hyde (Mills et  al. 2019). Resultant phosphoramide mus-
tard possesses cytotoxic activity through its effect on 
deoxyribonucleic acid (DNA), while acrolein is consid-
ered a toxic metabolite responsible for CP toxicity (Sun 
et al. 2014). Although significant lung injury is linked to 
CP toxicity, the pathogenesis of CP-induced lung dam-
age remains unclear (Saghir et al. 2020; Vahid and Marik 
2008). Lung injury could be attributed to direct injury 
to pneumocytes that leads to the release of pro-inflam-
matory cytokines, generation of reactive oxygen species 
(ROS), and the initiation of the inflammatory pathways 
(Conte et  al. 2022; Vahid and Marik 2008). CP causes 
lung injury in rats by reducing the antioxidant enzymes, 
such as superoxide dismutase (SOD), glutathione peroxi-
dase (GPx), catalase (CAT), and glutathione S transferase 
(GST). Moreover, CP depletes glutathione (GSH) as a 
protective antioxidant (Mombeini et  al. 2022). Simulta-
neously, tumor necrosis factor-α (TNF-α), Interleukin-6 
(IL-6), interleukin-1β (IL-1β), and malondialdehyde 
(MDA) raised by CP in rats’ lung tissue (Jiang et al. 2017; 
Mombeini et al. 2022; Saghir et al. 2020).

Recently, available antioxidants have shown a protec-
tive influence against CP-induced lung injury via inhi-
bition of oxidative stress induced by chemotherapy 
(Alsemeh and Abdullah 2022; Ayza et  al. 2022; Patra 

et  al. 2012; Saghir et  al. 2020). Tert-butylhydroquinone 
(TBHQ) is a synthetic soluble phenolic antioxidant com-
pound used as a food additive, cosmetic products, and 
pharmaceutical products (Duan et al. 2016). TBHQ with 
the molecular formula of (C10H14O2) is a metabolite of 
butylated hydroxyanisole, a widely used compound at 
approved concentrations in food to reduce or inhibit oxi-
dation reactions (Khezerlou et al. 2022).

TBHQ, the synthesized phenolic antioxidant, protects 
proteins and DNA from oxidative stress damage (Deng 
et  al. 2021, p. 2). It plays a main role in nuclear factor 
erythroid 2-related factor 2 (Nrf2) signaling pathway 
activation in several types of cells and tissues (Boss et al. 
2018; Meng et al. 2020). Notably, Nrf2 is a transcription 
agent that acts as a sensor for oxidative stress (Koh et al. 
2009). Nrf2 accumulates in the cytoplasm and travels 
to the nucleus to mediate cytoprotective gene expres-
sion through antioxidant-responsive elements (AREs) 
(Kensler et al. 2007; Xu et al. 2017). Thus, TBHQ results 
in increased gene expression of SOD, glutathione, and 
CAT (Pérez-Rojas et  al. 2011). Additionally, Nrf2 with-
stands oxidative stress by suppressing or preventing 
NADPH oxidase from being expressed (Zhao et al. 2020).

It has been proved that TBHQ has antioxidative effects 
via mitigating ROS synthesis which is involved in several 
diseases through different cellular mechanisms (Aldaba-
Muruato et  al. 2024; Wu et  al. 2015). Moreover, TBHQ 
alleviated apoptosis and lipid peroxidation in oxidative 
stress conditions (R. Li et al. 2020; López et al. 2022).

According to previous studies, TBHQ reduces the 
production of inflammatory cytokines like TNF-α, IL-6, 
IL-1β, and ROS (R. Li et  al. 2020; Z.-W. Zhang et  al. 
2020). Various experimental animal research supported 
the TBHQ protective antioxidant effect in different 
organs and diseases, such as ischemia/reperfusion injury 
in the liver and kidney (Zeng et al. 2017), traumatic brain 
injury (Saykally et al. 2012), hypoxic-ischemic brain dam-
age (J. Zhang et  al. 2018), Alzheimer’s disease (Akhter 
et al. 2011), nephrotoxicity (Pérez-Rojas et al. 2011), and 
scrotal heat-induced oxidative stress (Y. Li et  al. 2014). 
Despite the beneficial effects of TBHQ observed in pre-
vious experimental studies of several illnesses, some 
potential limitations were present. Firstly, the outcomes 
could not accurately reflect the therapeutic impact on the 
individuals. Most of these studies examined the potential 
therapeutic effect of TBHQ on a rat model for a short 
period of time, which may not be enough to prove the 
effect (Yang et  al. 2023). In addition, TBHQ’s effects in 
the disease setting were different based on distinct organ 
sensitivities to TBHQ, TBHQ concentrations, and its 
optimal dose (Zhu et al. 2022). We postulate that TBHQ 
could induce a robust defensive impact on rats’ lung tox-
icity induced by CP. The present study was prepared to 
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explore the possible protective mechanisms of TBHQ to 
inhibit CP toxicity such as oxidative stress, apoptosis, and 
lung insult in rats, and to take knowledge of the subject a 
step further.

Aims of the study
The current study was done to determine the biochemi-
cal and histopathological changes in CP-induced pulmo-
nary toxicity in rats and to study the potential protective 
effect of TBHQ on inhibiting CP toxicity.

Methods
Drugs and chemicals
Cyclophosphamide (Endoxan®) 1  g vial (Baxter Oncol-
ogy GmbH, Germany) was administered as one dose 
(200 mg/kg; i.p.) on day 9 to induce acute lung toxicity. 
It was freshly dissolved in 10 mL of normal saline (0.9%) 
for use (Alsemeh and Abdullah 2022). Tert-butylhy-
droquinone (99% purity) was purchased from Sigma-
Aldrich as a white crystalline fine powder and stored in 
a closed container in a cool, dry place when not in use. 
TBHQ dose was prepared by dissolving 100 mg of TBHQ 
in 100  μL of dimethylsulfoxide (DMSO, Sigma-Aldrich, 
Saint Louis, MO, USA) and then diluted with buffered 
sterile phosphate saline (PBS, pH 7.4), steadily stirring 
in the absence of light until the desired concentration of 
5 mg/mL TBHQ in 1% DMSO was delivered immediately 
(Aldaba-Muruato et al. 2024). Diagnostic kits and chemi-
cals used in the experiment were obtained from Sigma 
Chemical Company, St. Louis, USA, and Bio Diagnostics 
Co., (Giza, Egypt).

Animals
Thirty-two adult male 8-week-old albino rats, weighing 
200–230 g were purchased from Helwan Breeding Cen-
tre, Egypt. Prior to the study, the animals were acclima-
tized for 1 week in small polycarbonate cages (five rats/
cage) under standard pathogen-free conditions and quite 
a non-stressful special room. Animals were freely given 
access to a standard commercial diet (ATMID Company, 
Egypt) and tap water. A good, ventilated room, light-
ing (12-h light: 12-h dark) with temperature under con-
trol (24 ± 2  °C) with relative humidity (55 ± 5%). Pain, 
distress, and suffering were kept to a minimum grade. 
Animals were anesthetized before blood sample collec-
tion and before scarification. Scarification of the animals 
was done in an appropriate manner. The initial rats’ body 
weight was recorded before starting the experiment and 
administrating the drugs. The experiment and its proce-
dures complied with the Guide of the Faculty of Science, 
Suez Canal University research ethics committee of Ani-
mal Care and Use (approval no: REC129/2022) and were 
performed according to the Care and Use of Laboratory 

Animals published by the US National Institutes of 
Health (NIH Publication No. 85–23, revised 2011).

Experimental design
The rats were distributed randomly into 4 groups (n = 8/
group) as following (Scheme 1):

Group 1 (control group): rats received 1% DMSO 
(vehicle for TBHQ) orally for 14  days and a single 
dose of normal saline by intraperitoneal (i.p) routes 
on the 9th day of the study.
Group 2 (TBHQ): rats received TBHQ 50 mg/kg b.w. 
in 1% DMSO orally for 14 days and normal saline i.p 
on day 9th (Nna et al. 2020).
Group 3 (CP): rats received 1% DMSO orally for 
14 days and a single 200 mg/kg b.w dose of CP i.p on 
the 9th day of the treatment schedule to induce acute 
lung toxicity (Alsemeh and Abdullah 2022).
Group 4 (CP + TBHQ): rats received TBHQ as in 
group 2, and CP on day 9 as in group 3.

The single dose of CP (200 mg/kg, i.p.) used in this 
study was confirmed to induce oxidative stress and 
pulmonary toxicity in rats (Habibi et  al. 2020; Saghir 
et al. 2020; Shokrzadeh et al. 2015). The selection of a 
dose of 50  mg/kg b.w. had no negative effects on dif-
ferent biological indices such as liver enzymes, TNF-α 
and IL-1β and semen parameters (Liu et al. 2022; Nna 
et al. 2020; H. Zhang et al. 2021). Moreover, The dose 
of TBHQ used in the current study has been identified 
to activate cytoprotective genes in rat models of oxida-
tive injury in many studies (Nna et al. 2020; Ujah et al. 
2021; Zeng et al. 2017).

Sample preparation
Twenty-four hours after the last dose, ketamine/xyla-
zine (50/5  mg/kg, i.p) was administered to anesthetize 
the animals (Alsemeh and Abdullah 2022). After fasting 
overnight, rats were euthanized by cervical dislocation. 
To eschew any potential diurnal variations in the level of 
the antioxidant enzyme, the rats were sacrificed between 
8:00 and 10:00.

Before scarification of the rats, the required blood 
samples were gathered from the retro-orbital sinus. All 
blood samples were centrifuged at 4000  rpm and 4  ℃ 
for 10  min to obtain clear homogenates supernatant. 
The supernatants were stored frozen at − 80  ℃. To get 
the lungs cleaned from red blood cells and clots, after 
sacrifice, the lungs were removed and washed with cold 
phosphate-buffered saline (pH 7.4 containing 0.16  mg/
mL heparin). Left lung tissue was homogenized for 3 min 
in 1:10 volumes of ice-cold potassium phosphate buffer 
(50 mM; pH 7.5) on ice (Teflon-glass homogenizer).
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Body weight, lung weight, and the lung/body weight ratio 
measurement
At the beginning of the experiment, Initial body weight 
(IBW) and final body weight (FBW) at the end of the 
study were assessed for each rat. Lung weight (LW) was 
measured after removing and washing them with nor-
mal saline. Relative body weight (RBW) and relative lung 
weight (RLW) were calculated based on these equations: 
RBW = (final body weight / initial body weight) × 100 and 
RLW = (lung weight/final body weight) × 100.

Antioxidant enzymes and oxidative stress biomarkers 
analysis
The SOD activity was determined using the Sun et  al. 
technique (Sun et al. 1988), while the assessment of CAT 
activity was done based on Aebi method (Aebi 1984). In 
addition, the Lawrence and Burk method was adopted 
to calculate GPx activity (Lawrence and Burk 1978). The 
previous enzymes were expressed as units (U)/g of pro-
tein. The GST enzyme activity level was assessed accord-
ing to the Habig and Jacoby method (Habig and Jakoby 
1981). The GSH level was determined using the method 
described by Sedlak and Lindsay (Sedlak and Lindsay 
1968), while the MDA level was determined in tissue 
homogenate according to the Placer method (Placer et al. 
1966). Both MDA and GSH levels were mentioned in 
terms of nmol/g of tissue.

Assessment of the TNF‑α, IL‑1β, and IL‑6 proinflammatory 
cytokines levels
TNF- α, IL-1, and IL-6 pro-inflammatory cytokines were 
quantified in tissue homogenates using commercial rat 
ELISA kits.

Histopathological assessment
A 10% neutral buffered formalin solution was used to 
fix lung tissue samples for 48 h. Then, gradual ascending 
ethyl alcohol (from 70% to absolute) was used to dehy-
drate the samples. Next, they were cleared in xylene, fol-
lowed by paraffin embedding. The paraffin blocks were 
sliced into 5-μm-thick sections using a Leica RM 2155 
microtone (Leica Biosystems, Buffalo Grove, IL, USA). 
These sections were then processed and stained using 
H&E (hematoxylin and eosin) dyes. To determine the 
severity of the lung injury, a blinded pathologist exam-
ined the H&E slides under a light microscope. Defined 
parameters were observed to evaluate the lung damage. 
The parameters include edema, hemorrhage, and/or con-
gested alveolar capillaries, alveolar septal thickening, 
inflammatory cell infiltration, and tissue involvement. 
Blinding assessment was ensured during histopathologi-
cal evaluation to minimize bias in subjective assessments.

Immunohistochemistry evaluation of p53 and Bcl‑2
The lung sections were prepared as described above, but 
positively charged slides were used. Immunohistochemistry 

Scheme 1  Experimental timeline. Dimethyl sulfoxide (DMSO); tert-butylhydroquinone (TBHQ); cyclophosphamide (CP); intraperitoneal (i.p)
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was performed in accordance with SABC instructions and 
SABC kits. Briefly, slides were treated with 3% H2O2 and 5% 
bovine serum albumin (BSA) blockage for antigen retrieval, 
then incubated with primary antibodies, tumor suppres-
sor p53, and B-cell lymphoma-2 (Bcl-2) overnight at 4 ℃. 
Horseradish peroxidase (HRP)-conjugated secondary anti-
body was used at a 1:700 in blocking solution for 1 h at 37 ℃. 
3,3-Diaminobenzidine tetrahydrochloride (DAB), which 
was used as chromogen, and hematoxylin (Vector, Houston, 
TX, USA), was used as a counter stain for the nuclei.

Molecular docking
Protein structures of p53-MDM2 protein (PDB = 1YCR), 
IL-6 (1ALU), and IL-1β (PDB = 1ITB) were freely adopted 
from the protein Data Bank (https://​www.​rcsb.​org/​struc​
ture/). The ligand structure of THBQ was retrieved from 
PubChem (PubChem, n.d.). The protein structure was 
optimized by adjusting the amino acids with missing 
atoms or alternative positions, and ligand structures were 
built, optimized, and energetically favored using Maes-
tro. The Auto-Dock Vina software was used to conduct 
the molecular docking study following the routine work 
of Nafie et al. (Nafie et al. 2019) of defining the grid box 
dimensions box of 10 Å in the x, y, and z directions can-
tered on the ligand. Docking results were interpreted in 
terms of binding energy and ligand-receptor interactions. 
Chimera-UCSF was used to analyze the binding disposi-
tion and interactive analysis.

Statistical analysis
Statistical Package for the Social Sciences (SPSS) soft-
ware, version 23 for Windows (SPSS, Inc., Chicago, IL, 
USA), was used to analyze our data (SPSS, 2015). Numer-
ical data were presented as mean ± standard deviation 
(SD). Each group of rats was declared in the table or 

figure legends. Once obtaining the homogeneity of vari-
ance between treatment groups by Bartlett’s test and ana-
lyzing mean differences between experimental groups for 
each parameter separately, a one-way analysis of variance 
(ANOVA) followed by Student-Newman-Kaul’s test was 
conducted. Values of p < 0.05 were statistically significant.

Results
Effect of TBHQ and CP on body weight, lung weight, 
and the lung/body weight ratio
The effects of TBHQ, CP, and the combination of TBHQ 
with CP on animal IBW, FBW, RBW, LW, and RLW are 
shown in (Table 1). It was shown that both FBW and RBW 
were significantly decreased in group 3 (CP) in comparison 
with group 1 (p < 0.05). Coadministration of TBHQ with 
CP (group 4), significantly increased both FBW and RBW 
compared to group 3. There was a significant rise in LW 
and RLW among group 3 compared to group 1 (p < 0.05). 
Coadministration of TBHQ with CP in group 4 significantly 
decreased LW and RLW compared to group 3 (p < 0.05).

Effect of TBHQ and CP on antioxidant enzymes activity 
and oxidative stress biomarker levels
The antioxidant enzyme levels (CAT, SOD, GST, and 
GPx), GSH, and MDA showed a non-significant differ-
ence (p  ˃  0.05) in group 2 (TBHQ) compared with con-
trol group 1. In contrast, in CP-intoxicated rats (group 
3), there was a statistically significant decrease in anti-
oxidant enzyme activities and an increase in the level 
of MDA (p < 0.05) when compared with control groups. 
Coadministration of TBHQ with CP-intoxicated rats 
(group 4) exhibited a statistically significant improve-
ment in antioxidant enzyme status and reduction of 
MDA level (Table 2).

Table 1  Effects of cyclophosphamide (CP), tert-butylhydroquinone (TBHQ), and their combination on body weight gain, lung weights 
of rats’ groups, after 2 weeks of treatment

Data are mean ± SD. (n = 8 rats/group). TBHQ tert-butylhydroquinone, CP cyclophosphamide, IBW initial body weight, FBW final body weight, RBW relative body 
weight, LW lung weight, RLW relative lung weight

Relative body weight = (final body weight/initial body weight) × 100

Relative lung weight = (lung weight/body weight) × 100

-Significant at p < 0.05 (one-way analysis of variance (ANOVA) followed by Student-Newman-Kaul’s test was conducted)
a Compared to the control (group 1) group
b Compared to TBHQ (group 2)
c Compared to CP (group 3)

Parameters Group 1 (control) Group 2 (TBHQ) Group 3 (CP) Group 4 CP + TBHQ)

IBW (g) 202.50 ± 5.45 205.83 ± 3.82 203.83 ± 2.99 202.17 ± 4.58

FBW (g) 220.25 ± 4.98 222.67 ± 3.98 191.50 ± 2.98ab 214.50 ± 5.54c

RBW 108.58 ± 1.35 108.18 ± 0.37 94.36 ± 1.03ab 106.10 ± 1.26c

LW(g) 2.51 ± 0.12 2.67 ± 0.08 3.81 ± 0.12ab 2.62 ± 0.08c

RLW 1.13 ± 0.07 1.20 ± 0.05 2.00 ± 0.07ab 1.22 ± 0.03c

https://www.rcsb.org/structure/
https://www.rcsb.org/structure/
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Effect of TBHQ and CP on proinflammatory cytokines 
(TNF‑α, IL‑6, and IL‑1ß) levels
Table  3 shows the proinflammatory cytokines in the 
control and tested groups. There were no significant dif-
ferences in the control and TBHQ groups. The (TNF-α, 
IL-6, and IL-1ß) levels were statistically significantly 
elevated in CP-intoxicated rats in group 3 (CP) (p < 0.05) 
compared with control group 1. However, coadministra-
tion of TBHQ with CP in group 4 significantly decreases 
the levels of the proinflammatory markers (p < 0.05) in 
comparison to group 3.

Histopathological light microscopic findings in lung
Light microscopy photomicrographs of illustrative his-
tological sections of rat lungs from control and TBHQ 
groups are shown in Fig.  1. It depicts normal lung his-
tological architecture, involving normal (pneumocytes, 
airway bronchioles, alveolar septa, and blood vessels) 
in control and TBHQ groups. On the contrary, group 3 
showed interalveolar septum thickening, complete alveo-
lar blockage, and many enlarged blood vessels. The result-
ant thickening was prominent because of the significant 

inflammatory edema mixed with erythrocyte leakage in 
the interalveolar erythrocytes in the interalveolar septa. 
In addition to significant inflammatory cell infiltration, 
lymphocytes, and a few granulocytes. Marked compen-
satory emphysema combined with thickened septa was 
observed (Fig.  2A, B). On the other hand, coadminis-
tration of TBHQ in CP-intoxicated rats revealed partial 
obstruction of the alveolar septa, with congested blood 
vessels that were surrounded by some inflammatory cells 
(Fig. 2C, D).

Immunohistochemical results
Results of p35 immunostaining study are shown in Fig. 3. 
Lung tissue slides in the control and TBHQ groups 
showed negative staining of the nuclei of the alveolar 
cells (Fig.  3A, B). Strong positive immunostaining for 
p53 was observed in the nuclei of the alveolar cells of the 
CP-treated rat group 3 indicating the apoptosis process. 
Administration of TBHQ in CP intoxicated rats (group 
4) inhibiting p53 activity indicating antiapoptotic activity 
of TBHQ. In Fig. 4, Bcl-2 immunostaining investigation 
revealed that Bcl-2 was positively expressed with slightly 

Table 2  Effects of cyclophosphamide (CP), tert-butylhydroquinone (TBHQ), and their combination on oxidative stress markers in the 
lungs of rats’ groups, after 2 weeks of treatment

Data are mean ± SD. (n = 8 rats/group). Group 1 control, Group 2 TBHQ, Group 3 CP, Group 4 CP + TBHQ, CP cyclophosphamide, CAT​ catalase, SOD superoxide dismutase, 
GPx glutathione peroxidase, GST glutathione S transferase, GSH Glutathione MDA malondialdehyde

-Significant at p < 0.05 (one-way analysis of variance (ANOVA) followed by Student-Newman-Kaul’s test was conducted)
a Compared to the control (group 1) group
b Compared to TBHQ (group 2)
c Compared to CP (group 3)

Parameters Group 1 (control) Group 2 (TBHQ) Group 3 (CP) Group 4(CP + TBHQ)

CAT​ 69.75 ± 2.60 70.00 ± 1.69 32.63 ± 2.33ab 65.63 ± 2.62c

SOD 65.38 ± 2.50 66.13 ± 1.73 35.50 ± 2.45ab 62.88 ± 2.17c

GPx 284.00 ± 3.93 283.50 ± 4.17 188.63 ± 3.81ab 273.50 ± 6.55c

GST 45.38 ± 2.92 47.13 ± 4.02 32.3 ± 2.87ab 42.00 ± 3.42c

GSH 85.63 ± 3.54 86.17 ± 2.56 43.00 ± 3.30ab 80.88 ± 3.94c

MDA 383.13 ± 5.06 378.83 ± 7.49 464.0 ± 11.10ab 362.75 ± 9.91c

Table 3  Effects of cyclophosphamide (CP), tert-butylhydroquinone (TBHQ), and their combination on inflammatory markers in the 
lungs of rats’ groups, after 2 weeks of treatment

Data are mean ± SD. (n = 8 rats/group). Group 1 control, Group 2 tert-butylhydroquinone (TBHQ), Group 3 cyclophosphamide (CP), Group 4 CP + TBHQ, TNF-α tumor 
necrosis factor-α (pg/g tissue), IL-6 interleukin 6 (pg/g tissue), IL-1β interleukin 1 beta (ng/g tissue)

- Significant at p < 0.05 (one-way analysis of variance (ANOVA) followed by Student-Newman-Kaul’s test was conducted)
a Compared to the control (group 1)
b Compared to TBHQ (group 2)
c Compared to CP (group 3)

Parameters Group 1 (control) Group 2 (TBHQ) Group 3 (CP) Group 4 (CP + TBHQ)

TNF-α 2053.63 ± 28.04 2072.38 ± 39.44 3106.75 ± 84.12ab 2353.75 ± 55.01c

IL-6 109.38 ± 2.83 110.75 ± 3.06 168.13 ± 3.98ab 122.38 ± 5.32c

IL-1β 11.45 ± 0.21 11.53 ± 0.28 26.31 ± 0.59ab 15.83 ± 1.84c
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different intensity and distribution in the lung tissue of 
both group 1 and group 2 (Fig. 4A, B). Negative staining 
of Bcl-2 was observed in the CP group 3 (Fig. 4C) while 
administration of TBHQ in group 4 showed strong Bcl-2 
staining (Fig. 4D).

Molecular docking
The MDM2 oncoprotein is a cellular inhibitor of the p53 
tumor suppressor in that it can bind the transactivation 
domain of p53 and downregulate its ability to activate 
transcription. The IL-6 and IL-1β are pro-inflammatory 
cytokines, so their inhibition is one of the therapeutic 
targets for anti-inflammatory functions. Hence, THBQ 
was screened for binding activity using a molecular dock-
ing study toward p53, IL-6, and IL-1β proteins to high-
light the virtual mechanism of target protein inhibition.

As seen in Fig.  5A, THBQ was docked inside 
the p53-binding domain with the binding energy 
of − 12.26 kcal/mol and formed one hydrogen bond with 
Gln 59 through hydroxyl group (–OH) as a donor with a 
bond length of 1.83 A.

Additionally, it formed a series of Van der Waals forces 
with Phe 55, Lys 24, and other lipophilic amino acids 
inside the pocket. Hence, molecular docking results 
exhibited that the THBQ may serve as a promising inhib-
itor to P53 besides its regulator protein MDM2. Hence, 
the apoptosis pathway of cells will be stopped.

Regarding inhibiting IL-6 and IL-1β proteins, THBQ 
was docked inside the two proteins with binding ener-
gies of − 11.65 and − 14.32  kcal/mol, respectively. As 
seen in Fig.  5B, it formed one hydrogen bond with Arg 
179 through hydroxyl group (–OH) as an acceptor 
with a bond length of 1.85  A. Additionally, it formed a 
series of Van der Waals forces with Arg 182, and other 
lipophilic amino acids inside the pocket. As seen in 
Fig.  5C, it formed two hydrogen bonds with Ile 13 and 
Pro 26 through its two hydroxyl groups as donors with 
bond lengths of 1.43 and 1.92  A, respectively. Addi-
tionally, it formed lipophilic interactions with the lipo-
philic amino acids inside the pocket. So, based on the 
molecular docking results, we could conclude the pro-
tective role of THBQ as an apoptosis-inhibitor and 
inflammation-inhibitor.

Fig. 1  A hematoxylin and eosin stained sections of a rat lung in groups 1 and 2. Group 1 (A) H&E-200 × stained lung sections in the control group 1 
showing normal lung alveoli, interalveolar septum (green arrow), and air bronchioles (yellow star) also the blood vessels appear normal (blue arrow). 
B H&E-400 × stained lung sections in group 1 (control) showing normal pneumocytes type I (red arrow) and type II (yellow arrow). Group 2 (C) 
H&E-200 × stained lung sections in group 1 showing normal lung alveoli, interalveolar septum (green arrow), and air bronchioles (yellow star). The 
blood vessels appear normal. (D) H&E-400 × stained lung sections in group 1 showing normal pneumocytes type I (red arrow) and type II (yellow 
arrow)
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Discussion
Cyclophosphamide has both antineoplastic and immu-
nosuppressive effects that could cause adverse toxic reac-
tions in different organs of humans and animals (Ayna 
et al. 2020). It is proven that CP induces pulmonary tox-
icity by enhancing apoptosis, inflammation, and oxidative 
stress (Alsemeh and Abdullah 2022). As a result, there is 
a need to develop protective antioxidant agents that can 
be used in conjunction with chemotherapy to reduce its 
toxic effects (Ayza et  al. 2022). The present study high-
lights the antioxidant and anti-inflammatory effects of 
TBHQ on lung tissue to inhibit deterioration in the his-
tological pattern, oxidative stress, and programmed cell 
death induced by CP in rat’s lungs.

In the existing study, CP resulted in a significant 
decrease in both FBW and RBW, accompanied by a rise 
in lung weight. The decrease in body weight in group 3 
is in agreement with CP administration in many studies 

(Attia et  al. 2023; Raeeszadeh et  al. 2022). This may be 
attributed to anorexia and this could be explained by 
has harmful effects of CP on the appetite center in the 
hypothalamus and gastrointestinal tract (Elgohary et  al. 
2023; Kamiya et al. 2021). It is suggested that severe tis-
sue damage caused by ROS could lead to weight reduc-
tion (Badawi 2022). Increasing the lung weight in group 
3 in accordance with other studies that revealed CP 
administration induced a significant rise in LW and 
RLW, indicating the presence of pulmonary edema 
(Ashry et al. 2013; Badawi 2022). This observation could 
be linked to CP-induced pulmonary edema, inflamma-
tion, or increased collagen production, as confirmed by 
the histological results and increased proinflammatory 
cytokine levels (El-Kashef 2018). Additionally, the ROS 
production caused by CP intoxication will enhance the 
direct destruction of pulmonary vascular endothelial 
cells (Alsemeh and Abdullah 2022). In the current study, 

Fig. 2  A hematoxylin and eosin stained sections of a rat lung in groups 3 and 4. A H&E-200 × stained lung section in CP group 3 showed complete 
obstruction of the alveoli (black arrow), thickening of interalveolar septae, congested blood vessels, severe edema admixed with extravasated 
blood (green star) in the interalveolar septa (infiltration of inflammatory cells mainly lymphocytes and few granulocytes (yellow arrowhead) 
marked compensatory emphysema combined with thickened septa (curved blue arrow). B H&E-400 × stained lung sections in CP group 3 showing 
inflammatory cells infiltrated the interalveolar septae of mainly lymphocytes and few granulocytes (yellow arrowhead) epithelium destruction of air 
bronchioles (yellow dash arrow) with marked compensatory emphysema (curved blue arrow) associated with thickened interalveolar septa (green 
star). C H&E-200 × stained lung sections in CP and TBHQ group 4 showing partial obstruction of the alveoli (Black arrow), with some thickening 
of interalveolar septae (green star), with congested blood vessels that are surrounded with some inflammatory cells (yellow arrowhead). The 
air bronchiolar epithelium appears normal (Yellow dash arrow). D H&E-400 × stained lung sections in CP and TBHQ group 4 show some alveoli 
appear normal and others appear with thickening of their alveolar wall (green star), the air bronchioalveolar epithelium appears slightly distorted 
and destructed with fluid in bronchiolar lumen (yellow dash arrow) some infiltrated cells are present (yellow arrowhead)
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TBHQ restored the rats’ FBW and RBW with a decrease 
of the LW and RLW, which can be a consequence of a 
protective effect against CP toxicity.

In the current study, CP-induced oxidative stress was 
exhibited by a reduction of antioxidant enzymes CAT, 
SOD, GPx, GST, and GSH concentration levels and an 
increase in lipid peroxidation MDA levels. These find-
ings were in agreement with many studies that observed 
a decrease in antioxidant enzyme levels accompanied 
by an increase in MDA levels in the lung following CP 
intoxication (Alsemeh and Abdullah 2022; Badawi 2022; 
Ghosh et  al. 2015; Şengül et  al. 2017). Reduced GSH in 
the current study was in line with other studies, which 
revealed a reduction of GSH after the injection of CP in 
rats (Badawi 2022; El-Kashef 2018; Şengül et  al. 2017). 
El-Kashef, 2017 stated that CP increased MDA levels, 
causing alterations in the physiological activities of vari-
ous enzymes, resulting in lower GSH restoration capac-
ity (El-Kashef 2018). GSH as a crucial antioxidant has, a 
role in cytoprotecting versus oxidative insult (Amiri et al. 
2018). Oxidative stress is the end product of an imbal-
ance between oxidants and antioxidants, which results 
in free radicals generation, which might attach proteins, 
lipids, and genetic materials of the cells (Chabra et  al. 

2014; El-Naggar et al. 2015; Omole et al. 2018; Yuan et al. 
2014, p. 3). It is proven that GSH is known to be depleted 
by acrolein (Xiong et al. 2021). The mechanism through 
which Acrolein induces cellular damage is through gener-
ations of free radicals, binding with the GSH and decreas-
ing its level in the cell (Araghi et  al. 2018). Meanwhile, 
CP causes DNA deterioration via an oxidative process 
and the generation of H2O2 (Araghi et al. 2018; El-Nag-
gar et al. 2015). Lipid peroxidation is the main criterion 
of oxidative stress and MDA is a signal and a marker of 
lipid peroxidation (Ibrahim et al. 2019). Structural mem-
branes’ lipid peroxidation can be induced by free radicals 
causing interaction with other biomolecules, such as ion 
pumps, receptors, and enzymes, leading to suppression of 
their normal actions. The redox balance disruption which 
is mediated by oxidative stress enhances the alterations 
of the physiological and biochemical processes, as well 
as stimulation of many signaling pathways intracellularly, 
causing upregulation of the synthesis of proinflammatory 
cytokine and apoptosis induction (Mythili et al. 2004).

In the present study, CP provokes inflammation by 
increasing the release of proinflammatory cytokines 
TNF-α, IL-6, and IL-1ß while coadministration of TBHQ 
with CP has a positive anti-inflammatory effect in group 

Fig. 3  An p53 immunohistochemistry stained sections of a rat lung in the experimental groups. A Group 1 shows negative staining for p53 × 200 
can be observed in the nuclei of the alveolar cells. B Group 2 shows negative staining for p53 × 400 can be observed in the nuclei of the alveolar 
cells. C Group 3 shows strong positive staining for p53 × 400 can be observed in the nuclei of the alveolar cells. D Group 4 shows negative staining 
for p53 × 200 can be observed in the nuclei of the alveolar cells
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4. These findings were in agreement with other studies 
(Alsemeh and Abdullah 2022; El-Kashef 2018). Interrup-
tion mediated by oxidative stress leads to stimulation of 
signaling pathways and thus increased synthesis of pro-
inflammatory cytokines (Patra et  al. 2012). It is known 
that TNF-α stimulates an inflammatory cascade, which 
worsens the tissues’ injuries (Möller and Villiger 2006). 
Additionally, oxidative stress may boost TNF-α synthesis 
through NF-κβ activation (Imran and Lim 2013).

In the current study, the finding showed that several 
intracellular signaling pathways were activated by oxida-
tive stress which causes the upregulation of proinflam-
matory cytokine synthesis (TNF-α, IL-6, and IL-1β). 
These proinflammatory cytokines were increased in 
the tissues of CP treated group, which was ameliorated 
with the cotreatment of TBHQ with CP. The increase in 
inflammatory reaction with the release of proinflamma-
tory cytokine could be attributed to inflammatory cells 
such as macrophages, lymphocytes, and neutrophils 
(Möller and Villiger 2006). These effects are involved in 
the damage of connective tissue through the proteolytic 
enzymes release as well as free radicals’ release (Ahmed 
et al. 2015).

TBHQ played a significant role in the amelioration of 
oxidative stress and inflammatory pathways that were 
boosted by CP toxicity in group 3. TBHQ is a well-known 
natural compound that has a dual effect as an antioxidant 
impact (Sargazi et  al. 2015). The generated ROS could 
be cleared by the system, the enzymes like SOD, CAT, 
and the reduced GSH, as antioxidant materials (Yuan 
et  al. 2014). In  vivo study, TBHQ was able to signifi-
cantly reduce the biochemical and histological alterations 
induced by chemicals in tissues other than the lung (Dai 
et al. 2022; R. Li et al. 2020; Pérez-Rojas et al. 2011). Lilly 
Veskemaa et  al. (2021) found that the administration of 
TBHQ lessened oxidative stress and improved the sur-
vival of ventilator-induced lung damage in mice (Veske-
maa et al. 2021).

In the histopathological assessment, group 3 lung 
tissue showed interalveolar septum thickening, sig-
nificant inflammatory cell infiltration, edema, com-
plete alveolar blockage, compensatory emphysema, 
and enlarged blood. The normal lung architecture and 
immune response were restored by THBQ in group 4 
compared with group 3. The results of the current study 
were consistent with CP toxicity in many studies have 

Fig. 4  An Bcl-2 immunohistochemistry stained sections of a rat lung in the experiment groups. A Group 1 shows strong staining for Bcl-2 × 200 can 
be observed in the nuclei of the alveolar cells. B Group 2 shows strong staining for Bcl-2 × 400 can be observed in the nuclei of the alveolar cells. C 
Group 3 shows negative staining for Bcl-2 × 200 can be observed in the nuclei of the alveolar cells. D Group 4 shows strong staining for Bcl-2 × 400 
can be observed in the nuclei of the alveolar cells
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stated many histological changes, such as a thicken-
ing in the alveolar septa, injuries in the alveolar lumen, 
alveolar congestion, and lung congestion and cell infil-
trations in the pulmonary tissues of the CP-treated 
group (Badawi 2022; Olama et  al. 2018; Şengül et  al. 
2017). CP treatment prompted inflammatory cell infil-
trate which might be explained due to the generation of 
reactive radicals and release of inflammatory cytokines 
as mentioned previously. The occurrence of increased 
numbers of activated neutrophils may be the cause of 
induced pulmonary injury and pulmonary edema via 
the excessive elaboration of inflammatory cytokines, 
proteolytic enzymes, and oxygen radicals (Badawi 
2022). Former research findings mentioned that injured 
alveolar epithelial cells may drive excess generation of 
mediators and cytokines, which has been associated 
with histological alterations in the pulmonary paren-
chyma (Olama et  al. 2018). In the same line, previous 
researchers have identified that CP-treated animals are 
characterized by markedly increased pulmonary fibro-
sis which leads to visible fibrous tissue and distortion of 
lung architecture (Badawi 2022; El-Kashef 2018).

Coadministration of TBHQ in CP-intoxicated rats 
reverted most of the deleterious histological changes in 
the lung, depicting the ameliorative role of TBHQ against 

CP-induced lung damage via decreasing generation of 
ROS and the lung injury process (Sargazi et al. 2015; Zhao 
et  al. 2020). It was clear from histopathology findings in 
our study that TBHQ administration attenuates the sever-
ity and extent of tissue injury by restraining CP-induced 
collagen deposition and inflammatory cell infiltration. The 
study indicated that the protective effect of TBHQ, which 
has been evidenced in CP-induced pulmonary toxicity in 
rats by histological studies, is due to its anti-inflammatory 
and antioxidant properties (Koh et al. 2009; Sargazi et al. 
2015). Based on prior research findings, TBHQ has shown 
several potential therapeutic activities, as well as anti-
inflammatory, anticancer, antioxidant, and wound healing 
properties (Sargazi et al. 2015).

In this study, CP induced the generation of oxidative 
stress, release of inflammatory cytokines, and altera-
tion in lung architecture while TBHQ decreases the lung 
injury caused by CP in rats via antioxidant action and 
free radical-clearing characteristics (Scheme 2).

The molecular docking study highlighted the virtual 
mechanism of THBQ towards the investigated targets 
of P53, IL-6, and IL-1β as its molecular target of activ-
ity. Based on docking results, THBQ exhibited a good 
bonding mode of interaction with good binding energy to 
prove the stability of the drug-target complex.

Fig. 5  Molecular docking model/structure showing binding disposition and ligand-receptor interactions of TBHQ (green-colored) 
inside the binding sites of A P53-MDM2 protein as an inhibitor of p53-MDM2 binding. B IL-6 protein as an inhibitor of IL-6, and C IL-1β protein 
as an inhibitor of IL-1β. Docking study was performed using AutoDock Vina and three-dimensional images were generated using Chimera-UCSF
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However, as with any other animal research, there is 
the limitation of using animals. Both obvious and subtle 
differences between humans and animals make it diffi-
cult to apply data derived from animal studies to human 
conditions.

Conclusions
In conclusion, the usage of TBHQ showed a protective 
effect against CP-induced lung toxicity in rats by reduc-
ing oxidative stress, apoptosis, inflammation, and his-
topathological changes. TBHQ augmented antioxidant 
defenses and decreased proinflammatory levels in the 
damaged rat’s lung induced by CP toxicity. Consequently, 
TBHQ (with a used dose of 50 mg/kg b.w) may be a use-
ful protective agent during treatment with CP. Further 
studies are recommended to study the clinical applica-
tion of TBHQ as a protective agent to overcome antican-
cer-linked injury.
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