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Background: In addition to the DNA sequence, epigenetic markers have become substantial forensic tools during
the last decade. Estimating the age of an individual from human biological remains may provide information for a
forensic investigation. Age estimation in molecular strategies can be obtained by telomere length, mRNa mutation,
or by sjTRECs but the accuracy is not sufficient in forensic practice because of high margin error.

Main body: One solution to this problem is to use DNA methylation methods. DNA methylation markers for tissue
identification at age-associated CpG sites have been suggested as the most informative biomarkers for estimating
the age of an unknown donor. This review aims to give an overview of DNA methylation profiling for estimating
the age in cases of forensic relevance and the important aspects in determining the mean absolute deviation
(MAD) or mean absolute error (MAE) of the estimated age. Online database searching was performed through
PubMed, Scopus, and Google Scholar with keywords selected for forensic age estimation. Thirty-two studies were
included in the review, with variable DNA samples but blood commonly as a source. Pyrosequencing and EpiTYPER
were methods mostly used in DNA analysis. The MAD in the estimates from DNA methylation was about 3 to 5
years, which was better than other methods such as those based on telomere length or signal-joint T-cell receptor
excision circles. The ELOVL2 gene was a commonly used DNA methylation marker in age estimation.

Conclusion: DNA methylation is a favorable candidate for estimating the age at the time of death in forensic
profiling, with an uncertainty mean absolute deviation of about 3 to 5 years in the predicted age. The sample type,
platform techniques used, and methods to construct age predictive models were important in determining the
accuracy in mean absolute deviation or mean absolute error. The DNA methylation outcome suggests good
potential to support conventional STR profiling in forensic cases.

Background

The study of epigenetics refers to the heritable changes
in gene function that cannot be explained by DNA se-
quence changes (Deans and Maggert 2015; Felsenfeld
2014). The term “epigenome” refers to the overall epi-
genetic status of a cell, parallel to the term “genome”.
The epigenome is the set of chemical modifications to
the DNA that alter gene expression. Epigenetic changes
control how and when the genes are turned on or off
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which regulate the protein production in certain cells.
Epigenetic modification types include DNA methylation,
histone modification, and chromatic structuring. DNA
methylation is a common type of epigenetic modifica-
tion. The chromatin proteins associated with DNA may
be activated or silenced and therefore, only express ne-
cessary genes for an activity such as certain protein pro-
duction (Bird 2007; Vidaki et al. 2013). DNA
methylation plays an important role in embryonic devel-
opment, reprogramming, transcription, imprinting,
chromosomal stability, and X-chromosome inactivation.
The epigenetic pattern is preserved during cell division
in the same way as the DNA sequence is inherited from
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one generation to the next. However, during an individ-
ual’s lifetime, they can change over time (Kanherkar
et al. 2014). Epigenetics can be affected by environmen-
tal exposure, such as diet and smoking (Lee and Pausova
2013).

In mammalian cells, chemical modification of DNA
methylation primarily affects cytosines, followed by gua-
nines in a 5'-3" direction in the DNA double helix,
resulting in the addition of a methyl group (-CH3) to
their 5" carbon (C5). These 5'-3" CG methylation sites
in DNA are called “CpG” dinucleotides, which are
mostly methylated in the human genome (Ehrlich et al.
1982). Unmethylated CpGs called “CpG islands” are pre-
dominantly encountered in groups of 300—3000 bp with
high CG density (>55% CG content), mostly located at
the promoter of housekeeping genes (Antequerra and
Bird 1993; Espada and Esteller 2010). In the last decades,
studies have shown that certain CpG sites are often ei-
ther hypermethylated or hypomethylated when age in-
creases (Zhang et al. 2011). Hypermethylation (excessive
methylation) or hypomethylation (loss of appropriate
methylation) can promote carcinogenesis within a living
individual (Auerkari 2006).

In a crime investigation scene where highly limited
biological remains are found, such as blood, semen, tis-
sue, or saliva, accurate age estimation can be important
for the police to narrow down the identity of a victim or
criminal. The traditional materials required for age esti-
mation, such as large pieces of skeletal remains, are not
always available in crime scenes (Feng et al. 2018). In
order to estimate human age, several molecular-based
strategies have been proposed, such as telomere repeat
length that decreases with increasing age (Weidner et al.
2014), mRNA mutations that accumulate with increasing
age, T-cell DNA rearrangements (sjTREC) (Zubakov
et al. 2016), age-dependent deletions of mitochondrial
DNA, or protein alterations such as the racemization of
aspartic acid and advanced glycation end-products
(Wochna et al. 2018). Nonetheless, only DNA methyla-
tion has provided an acceptable accuracy that is clinic-
ally useful (Freire-Aradas et al. 2017).

A study of DNA methylation has provided a forensic
method for epigenetic female sex typing. The method is
based on the methylation pattern at a repetitive DXZ4
locus that is highly methylated on the active X chromo-
some but hypomethylated on the inactive X-
chromosome. The PCR protocol to detect the latter is
very sensitive and only requires 50 pg of DNA for female
sex typing (Naito et al. 1993). DNA methylation marks a
methyl group at the 5° position of cytosine residues
remaining in the extracted DNA, so this epigenetic
marker is compatible with the standard procedures of
forensics (Bird 2002; Sijen 2015). The analysis of DNA
methylation patterns in forensics may give hints on
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pathological conditions (Klutstein et al. 2016) or circum-
stances that lead to death (Virani et al. 2016) and indi-
cate the age of the DNA donor (Feng et al. 2018). This
review aims to address the DNA methylation-based age
estimation and the important aspect of its uncertainty in
forensic applications.

Main text

Methods

The online literature search in the Scopus, Google
Scholar, and Pubmed/Medline databases was applied to
define keywords of “age estimation” OR “age determin-
ation” AND “DNA methylation” AND “forensic”. The
guidelines of the Preferred Reporting Items for System-
atic reviews and Meta-analyses (PRISMA) were used for
the systematic review (Moher et al. 2009).

The inclusion and exclusion criteria were determined
as follows. The inclusion criteria were studies describing
the DNA methylation analysis for age estimation com-
bined with or without other methods, with no restriction
of sample size or age ranges, but restricted to reporting
in the English language, publication within 2014-20109,
and topics related to forensic studies. The exclusion cri-
teria were satisfied by review studies, age estimation
without molecular analysis, and abstracts without full
paper available.

Study selection

Reading the full articles for possible inclusion in the re-
view followed the initial screening of the titles and ab-
stracts. The full articles that matched the inclusion
criteria and none of the exclusion criteria were set as

eligible.

Results

Literature search and screening

The analysis initially included 495 studies, and after the
removal of duplicate articles, 462 were left for screening.
After excluding 340 articles by the relevance of title and
abstract, 122 full text articles were left. After further
careful screening for more detailed contents, 91 full arti-
cles were excluded, leaving 31 eligible full articles. The
procedure of the data selection is presented in Fig.1.

Data extraction

The studies comparing the different methods of forensic
age estimation were extracted as follows: name of the
first author, year of publication, methods, source of sam-
ples, number of samples, age (in years), age prediction
(in years) as MAD and RSME/SEE (Table 1). In the
DNA methylation method’s studies, the following data
were extracted: name of the first author, year of publica-
tion, population, source of samples, age range (in years),
sample size, CpG coverage, gene(s), technique/input



Maulani and Auerkari Egyptian Journal of Forensic Sciences (2020) 10:38 Page 3 of 15
P
Records identified through Google Scholar
(n =387), Scopus (n = 45), Pubmed (n = 63)
(Total n =495)
c
o
=
©
o
:': l
=
c
()]
=
Records after duplicates are removed
(n=462)
o0
E Records screened by title and abstract Records excluded
8 (n=462) —> (n =340)
S
o
(7]
l Full-text articles
excluded, review
Full-text articles assessed for eligibility articles, other t.han
(n=122) »| molecular analysis, not
in English language
(n=91)
> l
x
8
o0 Lo . - .
b Studies included in qualitative synthesis
(n=31)
- l
(]
.g Studies included in quantitative
o synthesis (analysis)
£ (n=31)
Fig. 1 Flow chart of screening analysis
Table 1 Selected methods of forensic age estimation
No Reference Method Source of samples N* Age* MAD? RMSE/SEE
1 Weidner et al. 2014 Telomere length Blood 104 18-84 18.2 23.1°
DNA methylation Blood 151 18-84 543 7.2°
2 Zubakov et al. 2016 mMRNA methylation* Blood 267 22-84 9.195 11.595¢
DNA methylation Blood 216 4-82 5.07 6.97¢
Telomere length Blood 305 22-84 12.276 15.362¢
SJTRECs Blood 306 18-84 9.757 11.935°
3 Cho et al. 2017 SJTRECs Blood 100 20-74 10.33 10.55¢
DNA methylation Blood 100 20-74 418 -

N: number of samples; *Age in years; ®MAD: mean absolute deviation (in years); "RMSE: root mean square error (in years); “SEE: standard error of the estimate (in
years); sjTRECs: signal-joint T-cell receptor excision circles; *Genes: NRCAM, ABLIM1, LRRN3, NELL2, SLC16A10, NOG, AK5, CCR7, CFH, housekeeping genes:

ACTB, GAPDH
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DNA for bisulfite conversion, statistical model, age pre-
diction by MAD or MAE, in years (Table 2).

Table 1 shows previous studies about DNA
methylation-based age estimation together with other
methods based on telomere length, mRNA methylation,
and signal-joint T-cell receptor excision circles
(STRECs). The uncertainty levels (as MAD) in age pre-
diction are compiled in Fig.2.

In the included studies (Table 2), the population and the
sample types used were varied, as seen in Figs. 3 and 4, re-
spectively. The study age range was 0—104 years old, and
the range of the number of samples was 16—725, as shown
in Figs.5 and 6, respectively. The number of CpG coverage
in this study was from 1 CpG to 32 CpGs. Variable candi-
date genes date was used for age prediction. The ELOVL2
gene was most frequently used in studies with different
body fluids and teeth (Fig. 7). The techniques used in the
study are compiled in Fig. 8.

The platforms in age prediction used the multivariate
linear regression model (MLRM), SNaPshot, methylation
sensitive-high resolution melting (MS-HRM), EpiTYPER,
next-generation sequencing (NGS), massively parallel se-
quencing (MPS), support vector regression model
(SVRM), multivariate quadratic regression model
(MQDRM), multivariate quantile regression model
(MQTRM), random forest regression (RFR), generalized
regression neural networks (GRNN), neural network
(NN), artificial neural network (ANN), R-models, or
combinations, as shown in Fig. 9.

The uncertainty in the predicted age ranged in MAD
from +1.2 (Giuliani et al. 2016) to 7.87 years (Huang
et al. 2015), in MAE from +0.94 (Freire-Aradas et al.
2018) to 7.45years (Vidaki et al. 2017), and in RSME
from +4.03 (Hong et al. 2019) to 11.1 years (Aliferi et al.
2018). Levels of mixed sample MAD and MAE are pre-
sented in Fig. 10.

Discussion

Age estimation is important to investigate in forensic
cases on persons of unknown age, in fraud cases, and
other legal affairs of victim identification. Several DNA-
based methods can be used to estimate human age, such
as those based on telomere length, mRNA, DNA re-
arrangement or sjTREC, and aspartic amino acid (Asp)
racemization, which decrease along with increasing age
(Zubakov et al. 2016).

Telomeres are located at the terminal regions of chro-
mosomes and protect chromosome ends. Shortening of
the telomeres will lead to cell senescence, characterized
by the incapacity of the cell to replicate. The measure-
ment of the telomere length for the estimation of human
age was first published using the Southern blot tech-
nique (Butler et al. 1998). The current methods in meas-
uring the telomere length for age prediction have been
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presented in two studies (Weidner et al. 2014; Zubakov
et al. 2016), with MAD of more than 10years for the
predicted age prediction was more than 10 years, while it
was 5years for the method of DNA methylation. The
telomere length-based approach is hence not sufficient
in forensic practice because of the high margin of error.

By identifying the mRNA markers via microarray
screening and validating with TagMan qRT-PCR profil-
ing, the results can provide an age prediction model.
The correlation between gene expression and age has
been used to find the strongest of nine mRNA candidate
markers. The MAD for mRNA methylation-based age
prediction was about 9 years, i.e., more than that the 5
years for DNA methylation-based prediction (Zubakov
et al. 2016).

The sjTREC levels in the blood decrease with increas-
ing age. The sjTRECs are episomal DNA molecules, by-
products of T-cell somatic rearrangements in the T-cell
receptor loci in order to recognize a wide range of for-
eign antigens. These molecules do not replicate and are
progressively lost during subsequent cell divisions
(Yamanoi et al. 2018). The MAD for sjTREC-based age
prediction is 9-10 years, again more than the 4-5 years
for DNA methylation-based age prediction (Cho et al
2017).

The sjTREC-based methods are only applicable with a
limited range of tissues under specific conditions (fresh
blood samples and tissues of fresh cadavers) and do not
meet the requirements of robustness under variable en-
vironmental factors and accurate estimation models
(Zubakov et al. 2016).

Other methods of molecular age determination in-
clude Asp racemization (Hartomo et al. n.d.). The race-
mization is a first-order kinetics reaction where the
amino acid changes from the levo (L) to the dextro (D)
form. The aspartic amino acid (Asp) is a protein com-
pound in many human tissues, including the teeth. Asp
is most prone to racemization, which is optically active
change because of an asymmetric carbon atom arrange-
ment. Asp has the highest racemization reaction rate of
all amino acids (Ogino and Onino 1988). In cartilage,
bone, and teeth, the turnover accumulation of the D
form proceeds at a low temperature-dependent rate
linearly with age. The ratio of D/L may be used to esti-
mate chronological age. In dentin, the MAD of the esti-
mated chronological age was approximately 3 years
(Ohtani and Yamamoto 2010).

The DNA methylation-based methods developed rap-
idly since the first relevant studies on DNA methylation
and age estimation were published (Naito et al. 1993).
The studies comparing DNA methylation-based age esti-
mation with other methods showed that, e.g., sfTREC-
based methods alone give MAD of about 10 years, while
DNA methylation gave MAD of about 4 years.



Maulani and Auerkari Egyptian Journal of Forensic Sciences (2020) 10:38 Page 5 of 15
Table 2 DNA methylation methods for age estimation in forensic studies
Reference Population Source of Age Sample CpG Genes Technique/t Statistical Age
and year samples range size coverage gDNA model prediction
(years) (MAD)
Weidner Germany Blood 20-75 151 samples 3 CpGs ASPA, ITGA2B, PDE4C Pyrosequencing/ MLRM 543
et al. 2014 500ng
Xu et al. Chinese Blood 20-80 49 healthy 6 CpGs ADAR, AQP11, ITGA2B, EpiTYPER/ T SVRM 238
2015a,b females PDE4C
Zbiec- Polish Blood 2-75 300 male 5 CpGs ELOVL2, Clorf132, TRIM59,  Pyrosequencing/ MLRM 34
Piekarska females KLF14, FHL2 2 ug
et al.
2015a,b
Freire- European Blood 18- 725 male 7 CpGs ELOVL2, ASPA, PDEAC, EpITYPER/ 300ng MQTRM MAE + 3.07
Aradas 104 females FHL2, CCDC102B, Clorf132,
et al. 2016 chr16:85395429
Park et al. ~ Korean Blood 11-90 535 samples 3 CpGs ELOVL2, ZNF423, Pyrosequencing/  MLRM +3.34
2016 CCDC102B 500 ng
Hamano Japanese Blood 0-95 22 healthy 24 CpGs  ELOVL2, FHL2 MS-HRM/ NA MLRM 744
et al. 2016 individuals
52 cadavers
Zubakov Germany Blood 4-82 216 healthy 8 CpGs ELOVL2, FHL2 EpITYPER/ 500ng  MLRM 4.22
et al. 2016 males
Choetal. Korean Blood 20-74 100 healthy 5-13 ELOVL2, Clorf132, TRIM59,  Pyrosequencing/ MLRM 418
2017 male CpGs KLF14, FHL2 500 ng
females
Naue et al. Netherlands Blood 18-69 208 samples 13 CpGs  ELOVL2, TRIM59, F5, KLF14,  MPS, Sanger RFR 324
2017 DDO, GRM2, HOXC4, LDB2, sequencing/ 300
MEIST-AS3, NKIRAS2, RPA2, ng
SAMDI10, ZYG11A
Freire- European Blood 2-18 209 healthy 6 CpGs FLJ40365, SDS, PGLYRP2, EpiTYPER/ 300ng MQTRM MAE +0.94
Aradas donors EDARADD, HKR1, KCNAB3,
et al. 2018 PRKG2, FLJ46365, ITGA2B,
TOMI1L1
Feng et al. Chinese Blood 15-75 390 males 9 CpGs ELOVL2, PDE4C, C1orf132,  Pyrosequencing ~ MLRM, 2.89
2018 Han CCDC102 B, RASSFS, EPITYPER/ 1pg  SVRM,
TRIMS59, cg10804656 ANN
Spolnicka  Polish Blood 12-76 120 healthy, 5 CpGs ELOVL2, Clorf132, KLF14, Pyrosequencing/  ANN MAE 3.8
etal. 2018 190 with FHL2, TRIM59 1-2 ug (healthy);
disease 44-7.1
donors (disease)
Zbiec- Polish Bloodand ~ 2-75 303 blood, 2 CpGs ELOVL2 Pyrosequencing/ MLRM 503
Piekarska bloodstains 45 2 ug
et al. bloodstains
2015a,b
Huang Chinese Blood and 11-70 40 blood, 5 CpGs ASPA, ITGA2B, NPTX2, Pyrosequencing/  MRLM 787
etal. 2015 Han bloodstain 20 100 ng
bloodstains
Thong Singapore  Blood, 3-80 145 blood, 32 CpGs ELOVL2, FHL2, KLF14, Pyrosequencing/  MLRM 4.8
et al. 2017 bloodstain 26 TRIM59, Clorf132 500 ng blood, 50
bloodstains ng bloodstain
Peng et al. Chinese Bloodstains  21-66 99 males 9 CpGs  TRIM59, RASSFS5, Clorf132,  EpIiTYPER/ 1 g MLRM 294 <
2019 Han chr10:22334463/65, PDE4C, MAD <3.55
CCDC1028B, ELOVL2
Lee et al. Korean Semen 20-73 31 males 3 CpGs TTC7B, NOX4, cg12837463  SNaPshot/ 200 MLRM 42
2015 (no gene associated) ng
Lietal Chinese Semen 21-54 38 males 1 CpGs NOX4 Pyrosequencing/  MLRM 4.08
2017 Han 500 ng
Lee et al. Korean Semen 24-57 19 forensic 1 CpGs NOX4 SNaPshot, MLRM 438
2018 case Multiplex PCR/

100 ng
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Table 2 DNA methylation methods for age estimation in forensic studies (Continued)
Reference Population Source of Age Sample CpG Genes Technique/t Statistical Age
and year samples range size coverage gDNA model prediction
(years) (MAD)
Eipel etal.  Germany Buccal swab 1-85 55 healthy 3 CpGs PDEAC, ASPA, ITGA2B Pyrosequencing/  MLRM 43
2016 donors 500 ng
Buccal swab 1-85 55 healthy 1 CpGs PDE4C Pyrosequencing/ MLRM 52
donors 500 ng
Bekaert Belgium Buccal swab 0-73 50 paternity 8 CpGs ASPA, PDE4C, ELOVL2, Pyrosequencing/  MQDRM 332
et al. cases EDARADD NA
2015a,b
Giuliani NA Teeth 17-77 22 32 CpGs  ELOVL2, FHL2, PENK EpiTYPER/ 200ng MLRM 1.2-7.07%
et al. 2016 (cementum, anonymous
dentin, healthy
dental pulp) extracted
teeth
Hong et al. Korean Saliva 18-73 226 male 6 CpGs SST, CNGA3, KLF14, TSSK6,  SNaPshot/ 5-50  MLRM 3.13
2017 females TBR1, SLC12A5, (PTPN7) ng
Hong et al. Korean Saliva 18-65 95 male 7 CpGs PTPN7, SST, CNGA3, KLF14, MPS, SNaPshot/  MLRM, NN 3.69
2019 females TSSK6, TBR1, SLC12A5, 200 ng (MLRMY);
3.19 (NN)
Bekaert Belgium Blood 0-91 169 4 CpGs ASPA, PDE4C, ELOVL2, Pyrosequencing/  MQDRM 375
et al. deceased EDARADD 200 ng
2015a3,b 37, living-
donor male
females
Teeth 19-70 29 extracted 7 CpGs PDEAC, ELOVL2, EDARADD  Pyrosequencing/  MQDRM 484
(Dentin) teeth male 200 ng
females
Vidaki et al. NA Blood and 11-76 46 blood, 16 CpGs  CSNK1D, C21orf63, CASC4,  NGS/ 500 ng MLRM, MAE 7.45
2017 saliva 265 saliva SSRP1, FXN, P2RXL1, RASS GRNN (blood);
F5, ERG, TRIP10, FZD9, 3.18 (saliva)
KLF14, NR2F2, VGF, NHLR
C1, SCGN, C190rf30
Alghanim  NA Blood and 5-72 40 blood, 27 CpGs  KLF14, SCGN, DLX5 Pyrosequencing/  MLRM 6.6 (blood);
et al. 2017 saliva 52 saliva 200-500 ng 58-62
(saliva)
Hamano Japanese Saliva, 1-73 197 healthy 2 CpGs ELOVL2, EDARADD MS-HRM/ NA SVRM 5.96 (saliva);
et al. 2017 cigarette individuals, 7.65
butts 16 (cigarette
cigarettes butts)
butts
Aliferi et al. NA Whole 11-93 76 blood, 12 CpGs  VGF, TRIP10, KLF14, MPS, Sequencing  GRNN, R- MAE 4.0
2018 blood, 34 saliva CSNK1D, FZD9, C210rf63, (MiSeq)/ 50 ng models (blood); 7.3
saliva, SSRP1, NHLRC1, ERG, FXN, (saliva)
semen P2RXL1, SCGN
Richards Australian Blood, 22-84 28 samples  10-31 ELOVL2, CCDC102B, PDE4C  MPS/ 200 ng MLRM 3.26
et al. 2019 semen CpGs (blood);
4.10
(semen)
Jung etal.  Korean Blood, saliva, 18-74 304 healthy 5 CpGs ELOVL2, FHL2, KLF14, SNaPshot/ 40- MLRM 348
2019 buccal donors Clorf132/MIR29B2C, 200 ng (blood);
swabs TRIM59 3.55 (saliva);
4.29
(buccal
swab)

tInput DNA for bisulfite conversion; + depend on teeth area is analyzed; accuracy is indicated by MAD: mean absolute deviation (in years) from chronological age;
MAE: median absolute error (in years); ANN: artificial neural network; GRNN: generalized regression neural networks; MLRM: multivariate linear regression method;
MPS: massively parallel sequencing; MQTRM: multivariate quantile regression model, MQDRM: multivariate quadratic regression model; MS-HRM: methylation
sensitive-high resolution melting, NGS: next-generation sequencing; RFR: random forest regression, an ensemble tool based on decision trees; R-models: statistical
computing software to test 14 regression methods; SVRM: support vector regression model; NA: not available
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Combining SjTRECs and DNA methylation exhibited
even higher predictive accuracy with MAD of about 3.3
years (Cho et al. 2017), while a combination set of five
DNA methylation markers and one mRNA marker gave
MAD of 4.6 years (Zubakov et al. 2016).

In line with the increasing age, DNA hypomethylation
increases in the distribution of the genome (affecting in-
tronic, exonic, promoters, and intergenic regions) or, in
other words, the global level of methylated genomic
DNA decreases as a person is aging (Wilson et al. 1987).
However, DNA methylation is also susceptible to repro-
ducibility variation in the assays according to the type of
tissue used in the analysis, because some of the 5mC
methylation marks in DNA are specific (Rana 2018). To
scrutinize further on DNA methylation in different types

of tissue, Horvath (2013) developed a multi-tissue age
predictor, which allowed estimating the DNA methyla-
tion age in most tissues. The age predictor used 8000
samples from 82 Illumina DNA methylation array data-
sets, covering 51 healthy tissues and cell types. The
multi-tissue age predictor is freely available (Horvath
2013).

Different sample sources can be modified in CpG
coverage, such as buccal swabs as DNA methylation
source of age prediction. The buccal epithelial cells with
leukocytes by two additional CpGs provided age predic-
tion with a multivariate model, showing that two cell
type-specific CpGs actually improve epigenetic age pre-
diction (Eipel et al. 2016). Different oral tissue sources
showed different MADs: MAD was 1.2years for
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cementum, 2.3 years for dental pulp, 7 years for dentin
(Giuliani et al. 2016), 6 years for saliva, and 7.7 years for
cigarette butts (Hamano et al. 2017).

Predicting younger age was more accurate and the ac-
curacy decreased with increasing age. Five years predic-
tion achieved 86.7% in the 2—19years of age category
and decreased to 50% in the 6075 years of age category
(Zbiec-Piekarska et al. 2015a). Validation of the age-
prediction model for young age ranges showed MAE +
1.25 years in the 2—18 years of donor age range while it
was MAE + 3.07 years in the adult populations (Freire-
Aradas et al. 2018). The CpG site methylation markers
with reduced methylation with age were CCDC102B,
ASP, Clorfl32, and chr16:85395429, while ELOVL2,
FHL2, and PDE4C progressed with increasing DNA
methylation with increasing age (Park et al. 2016). On
the other hand, young age tends to be overestimated,
while older age tends to be underestimated more often
(Naue et al. 2017). An experimental study showed that
ELOVL2, FHL2, PENK, and KLF14 did not display an

age-related change in gene expression in peripheral
blood mononucleated cells (Steegenga et al. 2014).
ELOVL2 locus provides a very good blood source of
information of human chronological age and did not
change significantly after 4 weeks of storage at room
temperature, although along with increasing time, the
positive result determined by PCR was gradually de-
creased (Zbiec-Piekarska et al. 2015b). The ELOVL2
gene was mostly used especially in blood and bloodstain
samples (75%) as seen in Fig. 7. ELOVL2 also appeared
to be an excellent age predictor across multiple ethnic
groups such as Polish (Zbiec-Piekarska et al. 2015a,b),
Koreans (Cho et al. 2017), and Singaporeans (Thong
et al. 2017). ELOVL2 was not affected by the disease, so
it appears suitable for forensic age prediction (Spolnicka
et al. 2018). ELOVL2 is also a stable gene and has a
strong positive correlation between methylation and age
across other samples such as teeth (Giuliani et al. 2016;
Bekaert et al. 2015b), buccal swabs (Bekaert et al. 2015a;
Giuliani et al. 2016; Jung et al. 2019), saliva (Jung et al.
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2019), and even cigarette butts (Hamano et al. 2017).
The PDE4C gene was used in 33.3% of studies using
blood samples, teeth, and buccal swabs. Eipel et al. dem-
onstrated that methylation of PDE4C (cg17861230) has
a higher correlation to chronological age with saliva and
buccal swabs than blood. While semen samples were de-
tected mostly by NOX4 (cg06979108) then TTC7B
(cg06304190) and cgl2837463 with no gene associated
(Lee et al. 2015; Li et al. 2017; Lee et al. 2018; Richards
et al. 2019).

For the target sites or CpG coverage and the age pre-
diction accuracy, three target sites have been suggested
as a preferable number for practical reasons (Weidner
et al. 2014; Park et al. 2016), while one study suggested
two target sites (Hamano et al. 2017). The age differen-
tial in methylation might be similar or significantly dis-
parate between different tissues, depending on the
specific CpG site. Therefore, in designing an age-

prediction model, the method should be investigated
thoroughly for multi-tissue forensic applicability (Aliferi
et al. 2018).

Epigenetic studies are best in comparing monozygotic
twins because they share the same genetic basis. They
both display the same methylation and gradually show
more differences in the methylation patterns (Kader and
Ghai 2015). There is a specific forensic marker in dis-
criminating monozygotic twins by the differences of
LINE-1 in interspersed repeat sequences (Xu et al.
2015b). Buccal samples from 31 CpG sites from three
loci in identical twins have demonstrated that at least
one CpG site with DNA methylation was significantly
different in all twin pairs (p < 0.05) and the highest
number of significantly different CpG sites was six
(Richards et al. 2019). The sampling of reference sub-
jects from monozygotic twin pairs is often favored for
investigating environmental influences on age prediction
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models since monozygotic twins usually have a similar
growth environment (Xu et al. 2015a; Vidaki et al. 2017).

The collected samples in the studies mostly use blood
from a donor or cadaver, but one study used samples
from both healthy subjects and cadavers collected within
10 days and found no significant changes between living
and dead body samples in the methylation status
(Hamano et al. 2016). DNA methylation is also stable in
bloodstains obtained from peripheral blood in both FTA
cards and gauze exposed at room temperature for about
3 months (Peng et al. 2019).

Chronological age prediction from a forensic setting
usually gives no information regarding possible disease
status; therefore, age prediction is also performed in de-
ceased subjects (Spolnicka et al. 2018; Vidaki et al. 2017;
Horvath 2013). The biological age is relevant for the on-
set and progression rate of many diseases. Chronological
age and biological age differences are important in fo-
rensic studies. Biological aging is influenced by cellular
and molecular aging including changes in dysregulated
nutrition, cell senescence, stem cell exhaustion, and
disease-related factors (Bell et al. 2019). In one study,
blood-related diseases showed high MAEs of the pre-
dicted age, with the highest MAE for anemia at 14.38
years, while schizophrenia showed the lowest age-
prediction error of 5.03 years (Vidaki et al. 2017). In an-
other study, a group with early-onset Alzheimer’s disease
was predicted to be 1.7years older than the

chronological age of patients. The genes Clorfl32 and
ELOVL2 were stable in the three groups of early-onset
Alzheimer’s disease, late-onset Alzheimer’s disease, and
Grave’s disease. Therefore, they can be used as predic-
tors of chronological age in forensic investigations (Spol-
nicka et al. 2018). ELOVL2 or ELOVL fatty acid
elongase 2, also known as SSC2, is located in human
chromosome 6 (6p24.2) (Jakobsson et al. 2006). In foren-
sics, ELOVL2 is a promising candidate marker for age
estimation because of its strong correlation with age pre-
diction and a wide range of changes in methylation in
aging (Zbiec-Piekarska et al. 2015b).

The pyrosequencing method was used in 13 out of 32
studies and is considered as a gold standard to detect
DNA methylation. Pyrosequencing gives a detailed pro-
file and accurate pattern of DNA methylation within 100
bases from the pyrosequencing binding sites. The ratio
of nucleotides T and C determine the methylation de-
gree at each CpG site in a sequence. Bisulfite conversion
methods change unmethylated cytosines to uracil, while
methylated cytosines remain cytosines. This is a quanti-
tative technique, which can detect low methylation of up
to 5%, and it can be used for multiplex assays (Kurdyu-
kov and Bullock 2016).

The NGS is capable to detect DNA methylation differ-
ences in bisulfite-converted DNA fragments with overall
performance <0.05 standard deviation. Other advantages
include high sensitivity, multiplexing capabilities, and
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the potential for merging with other DNA marker ana-
lysis (Vidaki et al. 2017; Horvath 2013).

The disadvantage of pyrosequencing and NGS is that
they are time-consuming and expensive (Mawlood et al.
2016); therefore, new methods were developed, such as
MS-HRM, which can indicate methylation status more
effectively in terms of labor, time, and cost (Hamano
et al. 2016; Hamano et al. 2017). MS-HRM is a method
to measure methylation profiles where the PCR amplifi-
cation of bisulfite-treated DNA is followed by melting
analysis. MS-HRM only requires qPCR, less time, and a
gDNA amount of 20 ng/gene, whereas pyrosequencing
needs 150ng of gDNA. However, MS-HRM cannot
measure the individual methylation rates and the issue
of PCR bias such as intrinsic differences in the amplifica-
tion efficiency of templates or by the self-annealing tem-
plates in the late stages of amplification (Hamano et al.
2017).

Other methylation detection methods include EpiTY-
PER (Feng et al. 2018; Zubakov et al. 2016; Freire-
Aradas et al. 2016; Freire-Aradas et al. 2018; Peng et al.
2019), massive parallel sequencing or MPS (Naue et al.
2018), and single-base extension such as the SNaPshot
technique. EpiTYPER is a sequencing method based on
mass spectrometry-based bisulfite analysis. This tech-
nique indicates regional-specific DNA methylation, is
fast and accurate but carries high cost in forensic service
(Suchiman et al. 2015). A single EpiTYPER run yields
126 triplicate measurements that with the required con-
trols are provided from a 384-well PCR plate (Suchiman
et al. 2015). Therefore, EpiTYPER is useful for measur-
ing relatively large numbers of samples. The MPS is a
high throughput approach to DNA sequencing. Millions
of short reads are sequenced per instrument run
(Richards et al. 2018). The main advantage of MPS is its
multiplexing capability, which allows simultaneous de-
tection of multiple CpG sites from different genomic lo-
cations in a single reaction. MPS also has high sensitivity
with single-base resolution, successfully applied to foren-
sic analysis (Aliferi et al. 2018). The disadvantages in-
clude the high recommended DNA input (~200-500 ng)
due to the extensive DNA fragmentation and loss during
the bisulfite conversion process (Richards et al. 2018).

The small amount of DNA commonly found in foren-
sic cases increases margins of error of DNA methylation
levels (Naue et al. 2018). The degraded and forensic rele-
vant materials mostly contain inhibitors that can prevent
DNA amplification of those samples and STR typing
often fails to produce full DNA profiles. Therefore,
shorter markers such as single-nucleotide polymor-
phisms (SNPs) and mini-STRs can be used with the
SNaPshot approach (Zar et al. 2018). The SNP genotyp-
ing allows the identification of highly degraded biological
samples. In the multiplex methylation SNaPshot method,
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the needed amount of bisulfite-converted DNA is only
about 4 ng; therefore, it can be used in a routine forensic
laboratory analysis (Hong et al. 2017). The average value
of gDNA input before bisulfite conversion is 50 ng as
the optimum input (Aliferi et al. 2018), but regarding
the samples, the reliable identification of blood and sal-
iva was possibly down to 10 and 0.1 ng for semen (Silva
et al. 2016).

Identifying age-associated DNA methylation sites re-
quire prediction models. MLRM was used in most stud-
ies of this review. Weidner et al. proposed an age-
prediction model with only three CpG sites with MLRM
and pyrosequencing (Weidner et al. 2014). Constructed
models for blood data by applying MLRM with pyrose-
quencing achieved MAD of about 3—4 years (Zubakov
et al. 2016; Zbiec-Piekarska et al. 2015a; Park et al
2016). The combination of MLRM based on SNaPshot
data also provided predicted age from semen (Lee et al.
2015; Lee et al. 2018) or saliva (Hong et al. 2017; Hong
et al. 2019; Jung et al. 2019) with MAD of 3-5 years. A
disadvantage of the multivariate linear model was over-
simplicity to explain the relationship between DNA
methylation and age. The relationship between DNA
methylation and age showed much faster (3- to 4-fold)
change during childhood than as adults, so the changes
were more accurately modeled with a logarithmic age
function (Alisch et al. 2012). Therefore, some studies
proposed the MQDRM, which performed well in both
living individuals and deceased samples (Bekaert et al.
2015b).

Another statistical model is MQTRM that the predic-
tion is not hindered by the prediction error which in-
creases with age, which establishes by age-specific
prediction intervals each time the new data contribute
to the model (Freire-Aradas et al. 2016).

Hong et al. suggested that different platforms give
different MADs between chronological and predicted
ages. The predicted age obtained by applying MPS and
SNaPshot data from the same individuals differed
greatly, so they used platform-independent age predict-
ive models using a neural network (NN) and MLRM.
NN was tuned to have five and two neurons on layer 1
and layer 2 concurrently with the MLRM method tuned
as well. The results demonstrated different MADs: 3.19
years for NN and 3.69 years for MLRM analysis (Hong
et al. 2019).

The ANN model was believed to improve the predic-
tion accuracy because it has the ability to recognize
complex patterns in chronological age traits and seems
to be a good alternative compared with the traditional
parametric methods such as multiple linear regression
models (Vidaki et al. 2017). ANN could eliminate the
problem of nonlinear patterns but had a slightly lower
prediction accuracy than NN (Spolnicka et al. 2018).
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Aliferi et al. used GRNN and ANN modeling for age
prediction, and the R project was employed to test 14 re-
gression methods. After using the same sample, both
GRNN networks and R model subsets were trained and
blind-tested. GRNN has a disadvantage in using a small
training dataset (n < 1000) for its susceptibility to over-
fitting and loss of generalizability (Vidaki et al. 2017; Ali-
feri et al. 2018).

Xu et al. compared age-prediction models in selected
11 CpG loci, including MLRM, multivariate nonlinear
regression, back-propagation NN, and SVRM. They
found that SVRM was the best model with the least
MAD and superior to MLRM (Xu et al. 2015a). Other
studies have used RFR, which allowed the selection and
incorporation of linear and nonlinear markers (Naue
et al. 2017). The established models from several studies
provide an online calculator that is freely accessible to
calculate predicted age (Feng et al. 2018; Weidner et al.
2014; Horvath 2013).

The methods and their advantages, limitations, and
observed performance in DNA methylation-based age
prediction in the studies of this review were hence quite
variable. In general, the best-performing methods of
DNA methylation-based age prediction showed MAD of
around 3 to 5 years. In the forensic field, DNA methyla-
tion should therefore provide fair information about the
remains of an unknown individual and his/her age. As
before, it remains likely that future development in the
assessment methods and techniques will reduce the as-
sociated limitations such as time and cost of analysis,
and possibly allow for improved accuracy in the pre-
dicted age.

DNA methylation is not only age-specific but also in-
fluenced by diet, lifestyle, smoking, ancestry, and other
factors that cannot be excluded in the studies. Lifestyle
and genetic factors are associated with the level of vari-
ation in DNA methylation despite their stability as epi-
genetic markers (Xia et al. 2014). Therefore, further
study is suggested on DNA methylation markers for age
estimation in e.g. different ethnic groups.

Conclusions

DNA methylation is a favorable candidate in estimating
the age at the time of death in forensic profiling. DNA
methylation changes rapidly up to adulthood and the
uncertainty (e.g., as mean absolute deviation or MAD) of
the age estimates is under favorable circumstances about
3 to 5years. The important aspects that influence the
MAD include the available tissue or body fluid used for
samples, analysis methods and platforms used according
to the type of samples, and ways to construct the age
predictive models. Developments in the methods of
DNA methylation profiling and these studies are
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important in supporting conventional STR profiling to
solve forensic cases in the future.
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