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Abstract

Fingerprint has been one of the powerful evidence in forensic investigation as it is useful for human identification,
associating an individual to an item and/or location of interest, as well as reconstructing the crime scenes. Considering
that latent fingerprints are commonly found at crime scenes and that it requires the use of fingerprint visualization
methods due to its hidden nature, continuous research in developing suitable methods has been reported. However,
the underlying physical and/or chemical interactions for certain visualization methods that have successfully visualized
wet fingerprints remains unreported. This is probably because previous studies were primarily focused on establishing
the fingerprint contrast rather than the comprehension of the physical and chemical aspects behind it. A
good understanding on such aspects may prove useful in guiding future improvements, or modifications of
existing fingerprint visualization methods. Hence, this review paper focuses on wet latent fingerprints, difficulties in the

Challenges

available wet fingerprint visualization methods, as well as its overview of the challenges and future insights.
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Background

Fingerprints and its evidential values

Saferstein (2013) stated that the admissibility of finger-
prints in the court of law has always been rested on the
premise of its (a) individual characteristic, (b) persist-
ency throughout an individual’s lifetime, and (c) system-
atic classifications of general ridge patterns. The first
principle stated that every individual, including identical
twins, has its own distinctive fingerprints (Wertheim
2011; Champod 2013; Hutchins 2013; Fish et al. 2014;
Daluz 2015). Such uniqueness relies profoundly on the
identity, number, and relative location of the minutiae
(Fig. 1) in point-by-point comparison of known and un-
known prints (Saferstein 2013; Houck and Siegel 2015).
Owing to its physical attachment to the dermis (Maceo
2011), fingerprints persist throughout an individual’s life-
time, provided that there is no deep-seated injury that
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penetrates the dermal papillae of the skin (Hutchins
2013; Houck and Siegel 2015). Nevertheless, such injury
simply offers a new ridge characteristic which may be
possibly valuable for identification (Maceo 2011; Safe-
rstein 2013). Although the appearance of the prints may
appear “less sharp” as a person ages, which corresponds
to the loss of elasticity of the skin, the arrangement of
friction ridge skin would remain unchanged (Maceo
2011). Furthermore, fingerprints have general ridge pat-
terns that can be systematically classified into loops,
whorls, and arches (Fig. 2) with its relative worldwide
population percentages being 60-65%, 30-35%, and
about 5%, respectively (Saferstein 2013; Celko 2014; Fish
et al. 2014; Houck and Siegel 2015). In addition, these
general patterns can be further classified into radial and
ulnar loops, plain whorl, central pocket loop, double
loop, accidental, as well as plain and tented arches
(Saferstein 2013).

Fingerprints can be defined as the impressions of fric-
tion ridge skin of fingers that are left on a surface of an
object upon contact (Barnes 2011; Saferstein 2013;
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Fig. 1 Some of the different minutiae of a fingerprint
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Houck and Siegel 2015). For forensic applications, finger-
prints fall into three different natures viz. latent, patent,
and plastic (Saferstein 2013; Daluz 2015; Houck and Siegel
2015; Kobus et al. 2016). Being frequently encountered at
crime scenes (Croxton et al. 2010; D'Elia et al. 2015; Lee
and Joullié 2015; Kobus et al. 2016), latent fingerprint con-
tinues to pose challenges to forensic scientists due to its
problematic hidden nature, and hence necessitating the
use of optical, physical, and/or chemical visualization
methods for comparison and identification purposes
(Saferstein 2013; Daluz 2015; Houck and Siegel 2015). Pa-
tent fingerprints are readily visible prints upon contact
with transferable colored media (e.g., blood and paint),
whereas plastic fingerprints refer to the impressions made

on soft, malleable objects (e.g., putty and wax) (Yamashita
et al. 2011; Saferstein 2013; Daluz 2015; Houck and Siegel
2015), making them relatively easier for forensic analysis,
as opposed to that of the latent ones.

Rationale of this review

The different chemical reactions between the respective
visualization methods with that of the available
water-soluble (e.g., amino acids) and water -insoluble
(e.g,. fatty acids) constituents of fingerprints serve as one
of the bases for successful visualization of latent finger-
prints (Houck and Siegel 2015; Kasper 2016). Therefore,
understanding the chemical interactions/mechanisms as
well as advantages and disadvantages of the available

Fig. 2 The general ridge patterns of a fingerprint
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methods for visualizing latent fingerprints on wet ob-
jects may prove useful for further improvements and
method developments. Unfortunately, chemical inter-
actions/mechanisms for several visualization methods
of latent fingerprints on wet objects are scarcely re-
ported in the body of literature. This review paper
further accentuates the need for developing suitable
greener visualization technologies for environmental
sustainability, as well as challenges that may cause
difficulty for visualizing latent fingerprints on wet
non-porous objects.

Prevailing knowledge on chemical constituents in
fingerprints for enabling visualization

Studies on the chemical constituents of fingerprints have
been extensively documented in the body of literature
(Ramotowski 2001; Croxton et al. 2006; Drapel et al.
2009; Connatser et al. 2010; Lim et al. 2011; Frick et al.
2015) mainly focusing on the development and/or im-
provement of the visualizing reagents, dating of finger-
prints, and donor profiling (Girod et al. 2012). It has
been reported that fingerprints are principally formed by
natural secretions of eccrine and sebaceous glands.
While eccrine glands secrete mainly water (about 98%)
(Ramotowski 2001), organic (e.g., amino acids) (Ramo-
towski 2001; Croxton et al. 2006; Drapel et al. 2009;
Connatser et al. 2010; Lim et al. 2011), and inorganic
compounds (e.g., sodium and potassium) (Ramotowski
2001), sebaceous glands secrete mostly fatty acids, squa-
lene, cholesterols (Ramotowski 2001; Hartzell-Baguley et
al. 2007; Croxton et al. 2010; Koenig et al. 2011; Lim et
al. 2011), and wax esters (Ramotowski 2001; Croxton et
al. 2010; Koenig et al. 2011). The presence of exogenous
contaminants in fingerprint constituents such as food
residues, dust, bacterial spores (Ramotowski 2001), and
drugs (Szynkowska et al. 2009; West and Went 2009)
were also reported in the literature. The initial constitu-
ents of fingerprints tend to vary over time, attributable
to factors such as donor characteristics (e.g., age and
gender), deposition conditions (e.g., pressure and dur-
ation of contact) (Girod et al. 2012; Frick et al. 2015),
and nature of the substrate (e.g., porous and
non-porous) (Girod et al. 2012).

Additionally, it has been described that the amount of
fingerprint constituents varies significantly between sam-
ples of the same (intra-variability) and different donors
(inter-variability) (Archer et al. 2005; Weyermann et al.
2011), presumably due to reasons such as uneven depos-
ition pressure and contact. However, Archer et al. (2005)
also argued that because of the wide variability of finger-
print constituents, predictions of the age of fingerprints
within reasonable margins remain limited. Besides, re-
searchers have documented about the notable differ-
ences in sebum constituents in children and adult’s
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fingerprints within 4 weeks of observation (Antoine et
al. 2010). Similarly, Williams et al. (2011) stated that the
number of total residues obtained and the ratio of drop-
lets to particles are noticeably higher in female adult
when compared to children of the same gender. How-
ever, the authors also pointed out the similarity between
the fingerprint deposits of female children with that of
adults in certain cases, probably due to the physiological
changes associated with the onset of puberty. In a study
by Blasdell (2001), the author investigated the longevity
of a child’s fingerprints with that of adults. He reported
that the fingerprints of children disappeared much
sooner than that of adults (in as early as the fifth day of
the observation), probably because children are known
to have considerable amounts of volatile esters in their
fingerprint constituents (Williams et al. 2011) which
subsequently evaporated at a faster rate than that of
adults (Buchanan et al. 1997). In another study by Crox-
ton et al. (2010), the researchers reported higher individ-
ual mean of amino acids (particularly asparagine) in
females as compared to males. On the contrary, the au-
thors reported lower mean amounts of most fatty acids
per fingerprints in females than that of males, although
this was reported as statistically insignificant. Ferguson
et al. (2012) while studying the direct detection of pep-
tides and small proteins in fingerprint constituents using
matrix-assisted laser desorption ionization mass spec-
trometry profiling with multivariate statistical analysis
reported 85% accuracy at distinguishing gender. Consid-
ering the varying factors that can affect the quality of
fingerprints discussed above, visualizing latent finger-
prints for forensic purposes are often challenging. The
relevant methods for visualizing wetted latent finger-
prints are discussed below.

Main text

Developments of physical and chemical fingerprint
visualizing methods for wet surface

Over the years, researchers have been consistently ex-
ploring new fingerprint visualization methods, and sub-
sequently improving them. Commonly, the selection of
visualization methods relies on the nature of surface ex-
amined (i.e., porous, semi-porous, non-porous, wet, or
dry), available constituents of latent fingerprints (e.g.,
amino and fatty acids), as well as the order of the
method application (Bramble and Brennan 2000; Ramo-
towski 2012a; Saferstein 2013; Houck and Siegel 2015;
Kasper 2016). In view of forensic practical caseworks, la-
tent fingerprints can be visualized using physical and/or
chemical methods (Saferstein 2013; Houck and Siegel
2015). In this paper, discussion on the physical method,
i.e., powder suspension techniques (viz. small particle re-
agent (SPR) and general powder suspensions), as well as
chemical methods that include iodine fuming, physical
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developer (PD), multi-metal deposition (MMD), single
metal deposition (SMD), as well as Oil Red O (ORO)
will be made. The comparative fingerprint visualization
methods are included in Table 1, the details of which are
discussed below.

Physical visualization method: powder suspension
techniques
Small particle reagent
SPR (wet powder suspension) was introduced to
visualize latent fingerprints on non-porous objects
that were accidentally or deliberately wetted (Trapecar
2012; Fish et al. 2014; Houck and Siegel 2015; Kasper
2016; Rohatgi and Kapoor 2016). Researchers concur-
rently assumed that SPR adheres to the lipid-soluble
constituents of fingerprints (Lennard 2007; Daluz
2015; Houck and Siegel 2015; Bumbrah 2016). Such
assumption was also supported by Goldstone et al.
(2015) when they reported poor performance of black
and white SPR in visualizing latent fingerprints ex-
posed to sea spray aerosol, possibly due to the lost
sebaceous constituents to such exposure.
Traditionally, SPR is a suspension of fine particles of
molybdenum disulphide (MoS,) in a mixture of water
and surfactant (Ramotowski 2012a; Daluz 2015; Bum-
brah 2016; Kasper 2016). Other than black, SPR comes
in two other color variants viz. white and fluorescent.
For dark or multi-colored surfaces, the addition of fluor-
escing agents was suggested by Springer and Bergman
(1995). The authors reported that Brilliant Yellow 40
gave better contrast of visualized fingerprints under ex-
citation in the blue range of spectrum, when compared
to that of Rhodamine 6G. When Frank and Almog
(1993) investigated the best formulation of white SPR,
the authors concluded that fine suspensions of zinc car-
bonate (0.66 g), water (20 mL), tergitol-7 (0.06 g), and
dimethyl ether (55 g) provided the best quality of visual-
ized fingerprints on dark surfaces. However, Dhall and
Kapoor (2016), while formulating a novel fluorescent
white SPR comprising of rose Bengal dye, reported that
visualization of latent fingerprints recovered from de-
structive crime scene simulations using fine suspensions
of titanium dioxide (TiO,) prevailed over the other two
combinations viz. zinc carbonate and zinc oxide. The au-
thors also established that regardless of the formulations
used, the quality of visualized fingerprints decreased
with increasing period of exposure to the simulated de-
structive crime scenes. Similarly, Rohatgi and Kapoor
(2016) found that increased in immersion time would
subsequently affect the clarity of the visualized finger-
prints, irrespective of the types of surface used. The au-
thors reported that novel SPR-basic fuschin dye
formulation showed a relatively better performance in
visualizing latent fingerprints on non-porous objects
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immersed in clean water for 45 days, when compared to
that of SPR-crystal violet formulation. In addition, Sodhi
and Kaur (2012) reported clear, sharp, and detailed qual-
ity of visualized fingerprints on non-porous objects after
those were immersed in water for up to 36 h. However,
the authors did not clarify the type of water used (e.g.,
tap, pond, or drainage water), and whether the experi-
ment was conducted in an indoor or outdoor setting.

Trapecar (2012) investigated the recovery of finger-
prints on transparent foils immersed in stagnant and
cold drinking water for up to 168 h using Swedish soot
mixture powder, white SPR, and cyanoacrylate fuming.
The author reported that among the three visualization
methods, white SPR was deemed the best method to
visualize wet latent fingerprints. In cases where ninhyd-
rin and cyanoacrylate fuming failed to perform, McDo-
nald et al. (2008) recognized the potential of SPR in
visualizing chlorine-exposed latent fingerprints at differ-
ent levels of humidity (i.e., dry nitrogen, 60% and 100%
of ambient humidity). In another study, Kumar et al
(2014) claimed that SPR provided sufficiently clear and
identifiable quality of visualized fingerprints on metallic
knife immersed in water for up to 20 days, beyond
which decreased quality of visualized fingerprints was
observed. Kapoor et al. (2015) revealed that with the in-
corporation of fluorescent rhodamine B dye in SPR for-
mulation, visualized fingerprints on wet non-porous
objects immersed in water for 96 h were of clear, sharp,
and detailed quality.

However, Jasuja et al. (2008) disclosed that fluorescent
SPR formulation based on acridine orange, anthracene,
and basic yellow 40 did not revealed positive fluorescent
results, although acridine orange did visualize fresh fin-
gerprints. Other than that, the authors also reported suc-
cessful visualization of latent fingerprints on substrates
immersed in water for 96 h using SPR formulation based
on rhodamine 6G, rhodamine B, and Cyano blue. Be-
sides offering easy and fast wet visualization, SPR is rela-
tively convenient for any colored surfaces as the
formulation can be easily substituted with wide range
of fluorescent dyes. However, precautionary measures
are greatly advised upon handling SPR due to the
toxicities of its chemicals viz. MoS, and TiO,, as re-
ported in the body of literature (Reid 2002; Inter-
national Agency for Research on Cancer 2010;
National Institute for Occupational Safety and Health
2011; Gao et al. 2015). Unfortunately, despite the
continuous developments of SPR formulations, review
of literature reveals no specific explanation on the in-
teractions/mechanisms between constituents of finger-
prints and compounds of SPR that has enabled the
successful visualization of latent fingerprints. Due to
such limitation, opportunities for further exploring
the theory of such interactions may prove useful.
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General powder suspensions

Historically, the development of conventional black
powder suspensions (which later commercialized as
Sticky-side Powder™) for developing fingerprints on the
sticky side of tape was first introduced by Burns (1994).
Beneficially, powder suspension techniques work best on
sticky-side of the adhesive tapes where common powder
methods are futile. As the name implies, this technique
is based on suspended powder particles (carbon-, titan-
ium dioxide-, or iron-based) in a mixture of water and
diluted detergent (e.g., Kodak Photo-Flo™ or Liquinox™),
which is basically similar to that of SPR except for its
thicker (paint-like) consistency (Champod et al. 2016;
Bleay et al. 2018). This technique has been reported suit-
able for enhancing fingerprints on wet non- and
semi-porous surfaces (Downham et al. 2012; Bandey et
al. 2014; Bleay et al. 2018) via spraying, painting, and
dipping (Daluz 2015). Because the traditional black pow-
der suspension produced poor background contrast on
dark surfaces, Wade (2002) investigated the potential
combination of Kodak Photo-Flo with white SPR (titan-
ium dioxide-based powder) where better quality of visu-
alized fingerprints on both sides of black tape was
observed than the use of white SPR alone. Similar effi-
ciency of such reagent was also further supported by
Williams and Elliott (2005). It has been speculated that
the successful visualization of fingerprints using this
technique is associated with its interactions with that of
the water-soluble constituents encapsulated within the
non-water soluble constituents (Bleay et al. 2018). Un-
like any other powder-based method, wet powder sus-
pension techniques have been reported to work best on
aged latent fingerprints (Bleay et al. 2018). Downham et
al. (2017) reported that the concentration of the surfac-
tant in the iron-based reagent plays a major role in de-
termining the clarity of the quality of visualized
fingerprints, probably because surfactant helps to con-
trol the preferential deposition of suspended powder
particles onto the constituents of fingerprints by forming
stable micelles (Bleay et al. 2018). For multi-colored sur-
faces, fluorescent powder suspensions (e.g., rhodamine
6G and basic yellow 40) were introduced. Despite its
usefulness in visualizing wet latent fingerprints, the
mechanism behind the successful visualization remains a
subject of debate.

Chemical visualization methods: iodine fuming, physical
developer, multi and single metal depositions, as well as
Oil Red O

Since the choice of chemical methods relies largely on
the available constituents of fingerprints as well as the
sequence of application (Saferstein 2013; Daluz 2015;
Houck and Siegel 2015; Kasper 2016), careful selection
of such methods must be made, as one method might
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preclude the other or reveal more fingerprints than one
process alone (Kasper 2016).

lodine fuming

Because of its application, iodine fuming is generally con-
sidered as a traditional chemical method. However, rather
than altering the chemical constituents, it merely en-
hances the appearance of latent fingerprints (Ramotowski
2012¢; Kasper 2016). It has been reported that heated iod-
ine crystals would bind to the lipid constituents of finger-
prints and subsequently visualizing them (with a brownish
hue) (Jasuja et al. 2009; Saferstein 2013; Daluz 2015;
Champod et al. 2016; Kasper 2016); however, the chemis-
try behind its successful visualization remains unreported.
Although iodine fuming is relatively simple, fast, and
non-destructive, as well as suitable for porous and
non-porous surfaces (Champod et al. 2016), the visualized
fingerprints have been reported to be transient in nature
(Ramotowski 2012c; Saferstein 2013; Houck and Siegel
2015; Champod et al. 2016; Kasper 2016). Due to such
drawback, iodine-visualized fingerprints are commonly
fixed with chemical fixing agents such as 1% solution of
starch in water (Saferstein 2013) and 7,8-benzoflavone
(Champod et al. 2016). Recently, Jasuja et al. (2012)
formulated and introduced alkaloid brucine as the
iodine-fixing reagent. The authors demonstrated success-
ful visualization of latent fingerprints on porous and
non-porous surfaces using the formulation of vapor and
dipping methods, respectively. Despite many successes in
visualizing latent fingerprints, studies reported that iodine
vapor is toxic as well as corrosive (Daluz 2015; Champod
et al. 2016; Kasper 2016), and therefore, great precaution
must be exercised when using iodine fuming method.

Physical developer

The use of physical developer (PD) reagent in visualizing
latent fingerprints was dated far back in the early of
1970s (Yamashita et al. 2011). The development of PD
for visualizing latent fingerprints on wet-porous surfaces,
by targeting the water-insoluble (e.g., lipids) constitu-
ents, is undoubtedly useful (Wilson et al. 2007; Ramo-
towski 2012b; Saferstein 2013; Daluz 2015; Houck and
Siegel 2015; Kasper 2016). However, de la Hunty et al.
(2015b) recently challenged such classic assumption on
the basis that PD still revealed positive results upon the
artificial removal of lipid constituents of fingerprints
using various organic solvents. In another study by the
same authors (de la Hunty et al. 2015a), PD was found
to be positively reactive toward the eccrine secretions,
thereby postulating that PD may not be exclusively tar-
geting lipids, but may be selective toward eccrine con-
stituents too, or a mixture of both. Nevertheless, the real
target constituents of PD remain baffling, and hence, ne-
cessitating the need to further explore the chemistry
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behind PD. In addition, Saferstein (2013) and Sauzier et
al. (2013) stated that PD is especially effective in provid-
ing identifiable and good quality of visualized finger-
prints on porous objects where other visualization
methods might have failed, along with developing aged
fingerprints (Yamashita et al. 2011; Braasch et al. 2013;
Fish et al. 2014; Daluz 2015). It has been reported that
PD is also useful on dry, porous surfaces (Ramotowski
2012b; Saferstein 2013). However, if PD is to be used
along with other visualization methods (e.g., ninhydrin),
it must be in the last of sequential processing, a concept
which is agreed upon by many researchers (Ramotowski
2012b; Saferstein 2013; Daluz 2015; Kasper 2016).

The formulation of PD reagent mainly includes Ag"
(from silver nitrate) and Fe** (from ferrous ammonium
sulphate) (reducing agent). Additionally, citric acid and
Fe?* (from ferric nitrate) are added into the formulation
to suppress the reduction of Ag" to Ag, unless it is
prompted by the presence of triggering/nucleating sites
(i.e., water-insoluble constituents of fingerprints). How-
ever, due to this instability, spontaneous reduction of
Ag" to Ag may still occur to form colloidal-sized Ag par-
ticles in the solution; the formed silver triggers more
chain reduction of silver, thereby increasing background
staining. To overcome this and to maintain the stability
of the working solution, the addition of cationic and
non-ionic surfactants appeared advantageous (Wilson et
al. 2007; Ramotowski 2012b). It has been reported that
spontaneous formation of colloidal-sized Ag particles
obtains its negative charge from citrate ions. Thus, the
addition of cationic surfactant (n-dodecylamine acetate)
stabilizes the PD formulation by suppressing the nega-
tive charge of the formed Ag colloids through the forma-
tion of micelle that surrounds the Ag colloids. Thereby,
causing a shift into positively charged particles to pre-
vent aggregation with other Ag* (Ramotowski 2012b). In
view of stabilizing the developing colloid Ag particles
(Aslan and Pérez-Luna 2002) and aiding the dissolution
of cationic surfactant (Ramotowski 2012b), the
non-ionic surfactant (e.g., Synperonic N or Tween 20) is
introduced. In addition, substitution of Tween 20 in PD
formulation offers a longer shelf life, as documented by
Houlgrave et al. (2011).

Generally, PD formulation is made up of three separ-
ate stock solutions viz. surfactants (cationic and
non-ionic), silver nitrate, as well as redox solutions (fer-
ric nitrate, ferrous ammonium sulphate, and citric acid)
(Yamashita et al. 2011; Daluz 2015; Kasper 2016). Al-
though literature (Ramotowski 2012b) suggested that the
three stock solutions are to be added in a manner of fer-
ric nitrate, ferrous ammonium sulphate, citric acid, and
lastly the surfactants, Sauzier et al. (2013) disputed this
suggestion. The authors reported that the order of
addition of the stock solutions did not influence (no
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significant difference) the performance of each working
formulation. However, for standard laboratory practical
purposes, the authors suggested that the order of
addition was to remain as such. While investigating the
modifications of PD formulation, Burow et al. (2003)
discovered that with the incorporation of reverse osmo-
sis/deionized (RO/DI) water as a substitution for dis-
tilled water in the traditional formulation, the amount of
surfactants needed can be subsequently reduced. This is
largely because RO/DI water contains relatively less ions
than that of distilled water, thus, less amount of surfac-
tant is needed to suppress the negatively charged Ag col-
loids. Additionally, the authors also revealed that by
reducing the concentration of silver nitrate solution
from 20 to 16%, relatively comparable and better results
were obtained when compared with that of traditional
PD formulation.

Despite being advantageous in visualizing aged latent
fingerprints, PD is tedious since it requires pre-washing
with non-chlorinated acids (e.g., maleic, malic, and di-
lute nitric acids) to remove the calcium carbonate
(which may act as nucleation site) on papers (Burow et
al. 2003; Ramotowski 2012b; Kasper 2016). Apparently,
this step is necessary as calcium carbonate is a common
filler used in the manufacturing of papers (Ramotowski
2012b). While comparable effectiveness in visualizing la-
tent fingerprints on photocopy paper was observed be-
tween malic and traditional maleic acids in the acid
pre-wash process, the use of malic acid increases back-
ground staining that partially obscured the fingerprint
ridge (Sauzier et al. 2013), thus complicates the identifi-
cation process. Aside from being costly (Sodhi and Kaur
2016) and the need to use extremely clean laboratory
glassware, the use of PD is somewhat destructive as the
method tends to permanently stain the evidence. Also,
pre-washing with malic acid may inevitably weaken the
fibers of the paper-based forensic evidence, further in-
creasing the possibility of destroying the evidence (Daluz
2015).

Multi metal deposition

The idea of using colloidal gold nanoparticles in visualiz-
ing latent fingerprints on porous, non-porous, dry, and
wet surfaces was first presented by Saunders in 1989 in
a process known as multi-metal deposition (MMD or re-
cently referred as MMD-I) (Saunders 1989). The
two-step process involves the initial deposition of metal-
lic colloidal gold nanoparticles (~30 nm) onto the fin-
gerprint residues (specifically amino acids), which
subsequently act as nucleating sites for the secondary se-
lective metallic silver deposition (Saunders 1989; Ramo-
towski 2012b; Champod et al. 2016). It has been
reported that gold particles have been widely used in
protein detection analyses (Nietzold and Lisdat 2012;
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Deng et al. 2016; Lai et al. 2017). The addition of
silver-based (modified PD) solution is considered advan-
tageous since the poor contrast of colloidal gold
nanoparticles-treated fingerprints (faint pink) would
turn visibly dark (Becue et al. 2008; Ramotowski 2012b;
Champod et al. 2016).

Despite its universal ability in visualizing latent finger-
prints on a wide range of porosity (Saunders 1989;
Zhang et al. 2007), this silver-on-gold method is rarely
applied in practical caseworks (Becue et al. 2012), attrib-
utable to major drawbacks which include the use of ex-
pensive reagents and scrupulously clean glassware,
laborious procedures (at least 1 h of processing due to
the requirement of many immersion baths) (Saunders
1989; Ramotowski 2012b), and the possibility of
over-development of prints (Becue et al. 2012; Ramo-
towski 2012b). In addition, MMD-I also suffers from
limited working pH (~ pH 3) (Saunders 1989; Becue et
al. 2012); at higher pH, significant decrease in the effi-
ciency of the method was observed (Bécue and Cantt
2012; Becue et al. 2012). Such outcome is observed due
to the loss of electrostatic attraction between the posi-
tively charged constituents of fingerprints (water-insolu-
ble proteins that are trapped within the lipids) and
negatively charged citrate-capped colloidal gold nano-
particles (Schnetz and Margot 2001; Becue et al. 2007;
Bécue and Cantu 2012).

Saunders (1989) also mentioned that the post-treatment
of visualized fingerprints with zinc (from zinc chloride)
seemed to preclude the efficiency of MMD, since the for-
mation of zinc ions subsequently interferes with the for-
mation and stability of the colloidal gold solution
(Ramotowski 2012b). Improvement in the operational per-
formance of MMD-I was documented by Schnetz and
Margot (2001) when the authors proposed an optimized
modification to the conventional MMD-I, known as
MMD-II. Apparently, the synthesis of smaller diameter of
colloidal gold nanoparticles (~ 14 nm) followed by the use
of hydroquinone/silver acetate developer in MMD-II
proved to perform significantly better than MMD-I, with
less reported background interference (Schnetz and Mar-
got 2001). Despite such improvements, MMD-II still suf-
fered from limited working pH range (pH 2.5-2.8), the
need of numerous immersion baths, as well as extremely
clean siliconized glassware. Since the numerous
immersion baths are laborious and time consuming,
Becue et al. (2007) suggested a modification to the
MMD-II method. The authors reported that thiolated cy-
clodextrins functionalized bare gold nanoparticles with
the addition of Acid Blue 25 dye produced readily observ-
able dark-blue prints in a single immersion bath. Although
the modified method has been reported to have similar ef-
ficiency to the MMD-II in visualizing latent fingerprints
(dry, wet, fresh, and aged) on various surface porosity,
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such method only works best at a restricted pH of 2.65
(Becue et al. 2007).

Single metal deposition

In the quest to find a better alternative of MMD, Stauf-
fer et al. (2007) proposed single metal deposition (SMD)
that incorporates the use of gold-on-gold method. Basic-
ally, the first part of SMD is similar to that of MMD
process (initial deposition of metallic colloidal gold
nanoparticles). The difference between the two methods
lies in the second part of the process where hydroquin-
one/silver acetate developer in MMD method is replaced
with hydroxylamine/gold chloride as the reducing agent.
With SMD, the labor intensiveness of the typical metal
deposition method is reduced from six (in MMD) to five
immersion baths with the use of one less reagent, hence
subsequently reducing the cost (Stauffer et al. 2007). In
addition, Durussel et al. (2009) reported a condition
(20 min of immersion time, intense 70 rpm stirring
speed, 1:1 mol/mol gold/hydroxylamine ratio with 3 x
10™* M of gold concentration) that had resulted in the
best SMD optimized parameters for visualizing groomed
fingerprints from two donors on a low-density polyethyl-
ene transparent film. The authors also mentioned that
the common risk of over-development of fingerprint
ridges observed in MMD can be circumvented in the
SMD method. Despite reporting satisfactory results, au-
thors (Stauffer et al. 2007; Durussel et al. 2009) did not
mention the end-color of the visualized SMD-treated
fingerprints, if it is comparable or better than that of the
MMD method. Moreover, the authors also did not spe-
cify the working pH of SMD used. Since pH is an im-
portant factor in MMD method, this can be suggestive
that the pH working range for this method being
narrow. The addition of aspartic acid conjointly with so-
dium citrate during the synthesis of gold has signifi-
cantly extended the working pH of SMD (from pH 2 to
pH 6.7), hence improving the robustness of the method
(Becue et al. 2012). Although the increased quality of vi-
sualized fingerprints at low pH is characterized by the
increased electrostatic interactions (since aspartic acid
has a lower pKa value), the active role of aspartic acid in
allowing the detection of fingerprints at an extended
working range of pH remains baffling.

Oil Red O

Having considered the limitations of PD, the develop-
ment of Oil Red O (ORO) (a pinkish lipophilic stain
used in histology) as an alternative was first popularized
by Beaudoin (2004). The author revealed that ORO
works best in visualizing latent fingerprints, particularly
on porous and semi-porous surfaces, although no direct
comparisons with PD were made. In another study by
Rawji and Beaudoin (2006), the authors revealed the
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superiority of ORO reagent over PD in visualizing latent
fingerprints, particularly on thermal and standard white
papers. In addition, the authors reported that the mean
quality of visualized fingerprints on wet papers following
the use of both methods (ORO and PD reagents) was
statistically insignificant. Guigui and Beaudoin (2007)
while investigating the sequential processing of ORO
with 1,8-diazafluoren-9-one, ninhydrin and PD sug-
gested that ORO is to be used after the application of
amino acid sensitive reagents, but before PD since it per-
manently stains the surface (Daluz 2015). Frick et al.
(2013) also concurred that PD should be used as the last
method in the sequential processing.

In an attempt to produce a relatively non-toxic, eco-
nomical, and simpler ORO reagent, Frick et al. (2012)
proposed the use of ORO in propylene glycol. The au-
thors found out that while the development time using
the modified ORO reagent was reduced to only 15 min,
the contrast and ridge detail of modified ORO-treated
fingerprints were comparable to that of traditional ORO
formulation with 60 min of development time. While re-
searchers have consistently agreed on the relatively com-
parable performance of traditional/modified ORO with
that of PD in visualizing fresh latent fingerprints, the lat-
ter remains as the best-known reagent to visualize aged
latent fingerprints on porous surfaces (Salama et al.
2008; Ramotowski 2012b; Frick et al. 2013). Despite a
number of advantages ORO reagent has to offer, the real
chemical interactions/mechanisms between those of
ORO chemicals with that of constituents of latent fin-
gerprints which has enabled the successful visualization
of latent fingerprints are yet to be fully understood.

Latent fingerprints: challenges and future insights
It has to be mentioned here that “criminals often seek a
watery repository for weapons and other evidence of
wrongdoing” (Becker 2013). Under such circumstance,
water-soluble constituents of latent fingerprints such as
amino acids, sodium/salt, and proteins would have been
washed off by water, leaving only the non-water-soluble
(e.g., lipid) constituents (Daluz 2015). Considering the
reported amount of sebaceous constituents in natural
fingerprints is generally lower than that of eccrine, this
could potentially further complicate the visualization
process. Furthermore, latent fingerprints on objects
immersed in water are vulnerable to several uncontrol-
lable physico-chemical parameters (e.g., pH, turbidity,
and biochemical oxygen demand) of the water which
may accelerate the degradation of the latent fingerprints.
Generally, the primary goal in forensic fingerprint
method development is always focusing on increasing the
contrast between fingerprints and its surface. However,
the physical/chemical mechanisms/interactions between
the chemicals and target constituents of fingerprints
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which correspond to the successful visualization of latent
fingerprints have been scarcely studied. Hence, it is im-
portant that such chemical studies to be explored exhaust-
ively so that room for further improvements can be
recognized. While fingerprint visualization methods on
dry surfaces are widely available, such cannot be said for
wet surfaces. Examples of fingerprint visualization
methods suggested for dry surfaces include, but not lim-
ited to, powder dusting (Sodhi et al. 2003; Garg et al.
2011; Singh et al. 2013; Badiye and Kapoor 2015), cyano-
acrylate fuming (Wargacki et al. 2007; Casault et al. 2016,
and amino acids sensitive reagents (Hansen and Joullié
2005; D'Elia et al. 2015). Currently, there are only limited
well-established visualization methods that are meant for
wet surfaces. Among the well-established methods are
SPR and PD for non-porous and porous surfaces, respect-
ively. While SPR utilizes suspension of fine particles (e.g.,
MoS, and TiO,) in a surfactant (Ramotowski 2012b;
Daluz 2015), toxicities arising from the long-term use of
such hazardous chemicals have been associated with nu-
merous adverse effects on human (International Agency
for Research on Cancer 2010; National Institute for Occu-
pational Safety and Health 2011; Gao et al. 2015; Wang et
al. 2016b) and ecology (Reid 2002; Norgate et al. 2007;
Wang et al. 2016a). On top of that, the consistent inad-
equate quality of fingerprints recovered from immersed
evidence continues to pose an uphill challenge, presum-
ably due to the duration of immersion (Trapecar 2012;
Rohatgi et al. 2015; Rohatgi and Kapoor 2016) as well as
different types of water (Rohatgi et al. 2015). Such obser-
vation was also supported by Madkour et al. (2017)
whereby the authors reported on relatively poor perform-
ance of SPR in visualizing latent fingerprints on glass,
metal and plastic surfaces, particularly after exposure to
sea and lake waters in different aquaria for more than
24 h.

Moreover, visualizing latent fingerprints on textured
surfaces such as unplastered concrete walls, natural
rocks, and bricks require very special techniques. Taking
into consideration the need to visualize latent finger-
prints for forensic identification as well as the possible
adverse effects that those chemicals may exert on human
and ecology, it is therefore becoming imperative to ex-
plore a greener and safer alternative in developing visu-
alizing reagents, preferably via biotechnology routes.
Recently, Rajan et al. (2018) proposed a green approach
of visualizing latent fingermark on various porosity of
dry substrates using nanocarbon powder obtained from
the by-product of acid digestion of rice husk. However,
its efficacy for visualizing latent fingerprints on wet ob-
jects is yet to be explored. Currently, review of literature
reveals only one study that explored the use of green
biotechnological route for visualizing latent fingerprints
(Azman et al. 2018) on wet non-porous objects. Despite
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their successful attempt at visualizing latent fingerprints
on immersed objects, the method appears tedious and
laborious, requiring the use of three different solutions
over the span of nine minutes of fingerprint
visualization. In addition, the method did not comply
with the prevailing International Fingerprint Research
Group (IFRG) guidelines, limiting its general acceptance
by the forensic fingerprint community. In this context,
formulation of a rapid visualization technique using a
single optimized nanobio-based reagent with comparable
performance as the conventional methods (e.g., SPR and
PD) acquires forensic significance.

Although the IFRG Steering Committee has endorsed
the guidelines for the assessment of fingermark detec-
tion techniques for evaluating a novel or modified
method, such guidelines did not outline the protocol for
preparing split fingerprints on difficult-to-bisect sub-
strates such as knives, in order to eliminate the
intra-donor variability between the two visualization
methods (International Fingerprint Research Group
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2014). Considering the fact that knife is one of the com-
mon weapons used in crime, the protocol for preparing
split fingerprints on knives for proposing novel or modi-
fied visualization method is therefore deemed necessary.
Moreover, because pictorial representation for visualized
fingerprints relating to the available grading scales re-
mains unavailable, discrepancies in judgment among the
different analysts may prevail, leading to problematic as-
sessments in the evidential values of fingerprint for fo-
rensic practical caseworks. Therefore, the suggestive
representative photographs of visualized fingerprints on
selected substrates against the absolute scale reported by
the Centre of Applied Science and Technology (Inter-
national Fingerprint Research Group 2014) provided
here (Table 2) may prove useful.

Conclusion

The application of fingerprints in criminal investigations
has been largely accepted as one of modern, accurate
means for establishing human identity. Being commonly

Table 2 Suggestive representative photographs of visualized fingerprints on selected substrates against the absolute scale reported
by the Centre of Applied Science and Technology (International Fingerprint Research Group 2014)

CAST grading sct

Suggestive vi

ized fingerprints on selected substrates

(absolute scale)

A4 white Paper

Aluminium foil Glass slides

No evidence of a
fingermark

Some evidence of a
fingermark

Less than 1/3 clear ridge
detail

Between 1/3 and 2/3 clear
ridge detail

4 Over 2/3 clear ridge detail
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recovered at scenes of crime, wet latent fingerprints re-
quire specific visualization methods with careful regard
to its surface as well as the sequential visualization pro-
cesses; as one method may preclude the other. Although
the use of chemical reagents to visualize wet latent fin-
gerprints has been well-reported in the body of litera-
ture, continuous usage of these toxic chemicals may cost
detrimental effects toward human and ecology. There-
fore, in order to minimize such harmful usage while
considering the need to visualize latent fingerprints, ex-
ploring the green biotechnological studies may be a
promising path in fingerprint technology as well as in
criminal investigations. Considering the numerous chal-
lenges that can be associated with the use of fingerprints
for establishing identity, particularly on wetted objects,
concerted and continuous efforts to explore new and
greener visualization approaches prove necessary.
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