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Abstract 

Background:  For various legal and forensic scenarios, establishing an individual’s age, both living and dead, plays a 
crucial role. Various morphological, radiographic, and molecular methods can be used for age estimation. In children 
and adolescents, age estimation is based on the established developmental stages. However, in adults, where the 
development ceases into maturation, the degenerative changes play a role in determining the age.

Main body of the abstract:  In the natural aging process, several molecular changes occur most commonly in the 
long-living proteins and hard tissues like the teeth and bone. These molecular changes gradually lead to alterations in 
several organs and organ systems, which can be quantified and correlated with age, including aspartic acid racemiza-
tion, collagen crosslinks, advanced glycation-end products, and mitochondrial DNA mutations.

Short conclusion:  Among the above methods, the racemization of aspartic acid can be considered as the most 
precise method. The main advantage of using aspartic acid racemization is that the sample can be collected from 
tissues (teeth) protected from various environmental and nutritional factors. If all the confounding factors are stable, 
the utilization of advanced glycation-end products can also be considered valuable. Environmental factors like lead 
accumulations may also help determine the age. However, further studies need to be conducted, focusing on provid-
ing a more standardized method. This review provides a concise summary of the biochemical techniques that can be 
used for estimation of age.

Keywords:  Age estimation, Biochemical methods, Aspartic acid racemization, Collagen crosslinks, Advanced 
glycation-end products, Lead accumulations, mtDNA mutations
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Background
An essential element of the forensic practice is to assign 
the exact age to both living individuals and human 
remains. Numerous methods have been proposed for age 
estimation for various legal, social, and forensic reasons, 
based on morphology, radiography, and biochemical 
changes. In children and adolescents, estimation of age 
is focussed mainly on the various developmental stages 
a human body undergoes until it completes maturation 
(Hegde et al. 2017, Ozveren et al. 2018, Demirjian et al. 
1973). However, in adults, when development ceases 
into maturation, the application of these methods is not 

possible. So, when growth attains maturity, the age esti-
mation is based on degenerative changes in the body 
(Cameriere et al. 2007). To estimate age in decomposed 
or skeletonized human remains, and in the absence of 
soft tissue remains, the bone and teeth are widely used. 
The majority of age estimation techniques are based on 
morphological and radiographic changes, may tend to 
show inconsistent results. The morphological methods 
are subjective and may give an error of up to ten years 
(Waite et al. 1999).

In natural aging processes, several molecular changes 
commonly occur in the long-living proteins. These 
molecular changes gradually lead to alterations in sev-
eral organs and organ systems including the teeth and 
bone. Several such changes have been studied and identi-
fied over the years. Aspartic acid racemization, collagen 
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crosslinks, advanced glycation-end products, and mito-
chondrial DNA (mtDNA) mutations are some of the 
most established methods of biochemical age estimation. 
The environmental factors, such as lead accumulation, 
may also play a role in determining the age. The cur-
rent narrative review describes the various biochemical 
methods, the methodology, advantages, and drawbacks 
concisely.

Main text
Aspartic acid racemization (AAR)
In most living organisms, optically active amino acids 
initially consist of only L-forms, which partially get con-
verted into D-forms until an equilibrium is obtained 
(Ogino and Ogino 1988). Under this equilibrium, the 
D/L ratio of aspartic acid is 1.0 (Ogino et al. 1985). This 

conversion is known as racemization, which causes 
alterations in the conformation of metabolically stable 
proteins, thereby inducing changes in their biochemical 
activities  (Fig.  1). It is temperature, pH, and humidity-
dependent (Alkass et  al. 2010). This phenomenon has 
been observed in long-living proteins. Among the amino 
acids, aspartic acid has the fastest rate of racemization, 
followed by alanine, glutamic acid, isoleucine, and leu-
cine. Therefore, aspartic acid is most commonly used for 
age estimation. The chemical instability of asparaginyl 
and aspartyl residues in proteins may result in modifica-
tions that increase the d-aspartate residue with age (Gei-
ger and Clarke 1987). Amino acids undergo continuous 
formation and degradation. In such cases, tissues with 
long-living proteins and low metabolic rates provide 

Fig. 1  Racemization of aspartic acid
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more precise results than proteins with high metabolic 
rates (Alkass et al. 2010).

In humans, the presence of long-living proteins is 
observed in hard tissues of the teeth, bone (type I col-
lagen, telopeptides, osteocalcin), sclera of the eye (elas-
tin), lung parenchyma (elastin), arterial wall (elastin), 
and intervertebral disc. It is also observed in articular 
cartilage (proteoglycans), brain (tubulin, synapsin, pro-
teoglycans, myelin base protein, white matter, β amyloid 
protein, tar protein), ocular lens (αA-crystallin), carti-
lage, membrane proteins of erythrocytes, and skin (Ritz-
Timme and Collins 2002).

Even after all other soft tissues have degenerated, hard 
tissues like the teeth and bone are well preserved. The 
teeth, in particular, are frequently conserved even when 
most of the bones have been destroyed or mutilated. In 
1975, Helfman and Bada first used the aspartic acid race-
mization method in dentin to assess age (Helfman and 
Bada 1975). Subsequently, several studies have been con-
ducted by analyzing various dental tissues like enamel 
(Griffin et  al. 2010), dentin (Helfman and Bada 1976), 
(Ohtani and Yamamoto 2010; Minegishi et  al. 2019), 
cementum (Ohtani et al. 1995), and using the tooth as a 
whole unit. The rate of aspartic acid racemization in root 
dentin was investigated in a Polish population (Wochna 
et  al. 2018), and researchers found a strong correlation 
(0.96–0.98) between chronological age and aspartic acid 
racemization levels, with a standard estimation error of 
2.95–4.84 years. A correlation between the age of dentin 
and the extent of aspartic acid racemization was identi-
fied to be approximately 0.96 with a standard error of 
5.69 years (Ritz et al. 1990).

The extent of post mortem preservation on aspartic 
acid racemization in the dentin of healthy, impacted, 
and carious teeth were studied and noted that the teeth 
can be preserved for up to 10 years, showing a negligible 
effect on estimated values with an error of 4 years (Ogino 
et  al. 1985). The presence of caries in teeth has been 
shown to influence the rate of racemization (Griffin et al. 
2008). Deviations up to 20.39 years were noted in carious 
teeth (Sirin et al. 2018). It is assumed that caries induce 
protein degradation, which thereby generates small frag-
ments of lower steric hints, leading to faster accumu-
lation of d-aspartic acid (Collins et  al. 1999). Protein 
degradation is observed in cases of archaeological tooth 
samples with long post-depositional intervals, which may 
lead to the formation of smaller peptide fragments. This 
may lead to a faster conversion of L-forms to D-forms, 
resulting in increased accumulation of D-Asp and hence 
may show false high age at death estimates (Mahlke et al. 
2021).

The aspartic acid racemization is also observed 
in deciduous teeth and a correlation between 

chronological age and rate of racemization has been 
identified (r=0.824–0.98), proving it to be applicable in 
deciduous teeth (Ohtani 1994).

With the increase in temperature, the extent of aspar-
tic acid racemization increases significantly (r=0.913; 
p<0.01) with heating time, and the stability rates of den-
tin at different temperatures (22–25°C, 4°C, and −30°C) 
showed no significant changes after 1 year with an error 
range of 5 years (Minegishi et al. 2019). The position of 
teeth and the time taken for dentin formation also influ-
ence the rate of racemization and is highest in the first 
molars in the middle-aged population and second molars 
in elderly individuals (Ohtani et al. 2003). No differences 
in racemization rates were noted between the jaws (Raj-
kumari et al. 2013).

High power liquid chromatography (HPLC) and gas 
chromatography (GC) are generally used to analyze the 
racemic mixture. In the various available HPLCs, ion-
exchange chromatography (IEC) is usually preferred 
(Kaufman and Manley 1998). The gas chromatographic 
method is considered as the most sensitive method 
(Minegishi et  al. 2019). The procedure involves acid 
extraction, which results in two parts: the acid-soluble 
and the insoluble acid fraction. The soluble acid frac-
tion mainly consists of collagen, and the insoluble frac-
tion consists of non-collagenous proteins. The insoluble 
acid fraction (collagen) undergoes constant remodeling. 
The rate of racemization is rapid in the non-collagenous 
proteins. The d-aspartate accumulates with age predomi-
nantly in the non-collagenous proteins (Ritz et al. 1994). 
Such non-collagenous proteins like osteocalcin are also 
found in bone, and the extent of aspartic acid racemiza-
tion using osteocalcin is the measure of the aging of these 
proteins, thereby measuring an individual’s age. However, 
the correlation between the rate of racemization and age 
varies with the type of bone used, the highest being in 
the sternum and the lowest in the pelvic and sacral bone 
(Ohtani et  al. 2002). The alveolar bone, a metabolically 
more active bone, shows an increased ratio of racemi-
zation with age. The rate is significantly higher in males 
than in females. However, the alveolar bone cannot be 
used in edentulous individuals (Ohtani et al. 2007).

Non-dental tissues like the yellow ligament of the 
spine, and sclera, contain long-living proteins like elastin 
that accumulate d-aspartate residues, making it a suit-
able testing sample with results closer to the actual age 
and less time consuming. But during sample collection, 
elastin’s purification is necessary as the AAR is strongly 
influenced by collagen contamination (Ritz-Timme et al. 
2003). However, it is not reliable for corpses under the 
influence of high temperatures (Klumb et al. 2016). Evi-
dence suggests that this method is highly accurate and 
precise in determining the age in both humans and 
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cadavers with an error of fewer than ± 3 years (Ohtani 
and Yamamoto 2010).

Collagen crosslinks
The central portion of type I collagen has a triple-hel-
ical structure to stabilize the collagen network between 
which covalent crosslinks exist (Eyre 1987). These reduc-
ible crosslinks are present in newly synthesized collagen. 
Their proportion rapidly increases during the growth 
phase to reach a maximum. As the growth rate slows 
down, the proportion of these crosslinks decreases and 
forms a mature non-reducible crosslink (Robins et  al. 
1973). These age-related changes are observed in the skin 
(Robins et  al. 1973), dentin (Mechanic et  al. 1971), and 
cartilage (Eyre and Oguchi 1980).

The crosslink patterns are characteristic and are formed 
by two divalent crosslinks of dehydro-dihydroxylysinon-
orleucine and dehydro-hydroxylysinonorleucine. The 
bone and dentin collagen also contain two non-reducible 
crosslinks of hydroxypyridinium, namely pyridinoline 
and deoxypyridinoline. The calcified tissues of bone and 
teeth show a significant peak in lysyl hydroxypyriidinium 
residues (Eyre et al. 1984).

Pyridinoline is a non-reducible crosslink, which is the 
main maturation product of reducible crosslinks promi-
nent in bone and dentin (Fugimoto et al. 1978). It has a 
3-hydroxypyridinium ring with a three side-chain that 
embodies their hydrolysine residues. It is abundant in 
adult cartilage at one residue per collagen molecule. 
Almost all reducible crosslinks in cartilage collagen seem 
to progress rapidly to hydroxypyridinum crosslinks. 
Deoxypyridinoline has been identified as a minor compo-
nent in the adult dentin residues.

The correlation between collagen crosslinks and age has 
been studied, and it was observed that the hydroxypyri-
dinium crosslinks increased with age (Walters and Eyre 
1983). Evaluation of deoxypyridinoline crosslinks from 
dentin can show an error of 14.9 years (Martin-De Las 
Heras et al. 1999). Analysis of these crosslinks is studied 
using enzyme immunoassay and chromatography.

Analysis of dentin at different ages, therefore, is a use-
ful index of the rate of maturation of hydroxylysine-based 
crosslinks in collagen fibrils. However, the estimated age 
can have a high error rate. Standardization needs further 
research.

Advanced glycation‑end products (AGEs)
Louis–Camille Maillard, in 1912, discovered that when 
amino acids are heated in the presence of reducing sug-
ars, they turn brown. This biological process results in the 
formation of advanced glycation-end products, known as 
Maillard reaction. It involves a non-enzymatic reaction 
of the blood glucose with body proteins, which leads to 

a cumulative modification of tissue proteins through-
out the body (Tessier 2010). Maillard reaction can be 
described in three stages: early, intermediate, and late 
stages (Singh et al. 2001). In the early stage, reducing sug-
ars like glucose, fructose, mannose, and galactose react 
with different molecules like proteins, nucleic acids, and 
lipids to form a stable ketoamide called Amadori com-
pound. In the next stage, this Amadori compound further 
degrades into various carbonyl compounds like glyoxal, 
3-deoxyglucosone, and methylglyoxal. The final stage 
involves reactions between the carbonyl compound with 
amino acids, leading to complex rearrangements, cleav-
age, and covalent binding reactions of the Amadori prod-
ucts  (Fig.  2). This Amadori arrangement is irreversible 
and results in the formation of stable adducts and protein 
crosslinks called advanced glycation products (Schleicher 
and Wieland 1986).

Various end products including pentosidine (Sell and 
Monnier 1990), fructoselysine (Lyons et  al. 1991), and 
N€-carboxymethyl lysine (CML) (Fu et  al. 1996) have 
been analyzed. These AGEs accumulate in long-lived 
proteins. They can cause tissue damage and may also 
contribute to the development of complications in diabe-
tes mellitus (Brown et al. 2005), atherosclerosis (Brown-
lee 1994), aging (Fu et al. 1996), and Alzheimer’s disease 
(Vitek et  al. 1994). Systemic conditions like advanced 
renal diseases, hypertension, inflammation, oxidative 
stress, and hyperglycemia also accelerate the formation of 
AGEs (Singh et al. 2001). The formation of these products 
in vitro and in vivo is turnover dependent on the chemi-
cally modified protein target and sugar concentration. 
These AGEs easily bind to collagen and act as a crosslink 
between the collagen fibrils in collagen-rich tissues like 
the crystalline lens (Lyons et al. 1991), articular cartilage, 
aorta (Oimomi et  al. 1989), rib cartilage, skin collagen 
(Dyer et al. 1993), intervertebral disc, and dentin.

Along with nutrients, dentin also receives AGEs from 
the blood vessels. They form crosslinks with collagen 
fibers and induce various mechanical and morphologi-
cal changes in dentin, along with brownish discoloration 
(Ilea et al. 2018). By analyzing the degradation of dentin 
collagen by carboxylic protease, the characteristic Mail-
lard fluorescence can be noticed (Kleter et al. 1997). An 
early Maillard reaction product, called furosine, has 
been examined in healthy and carious dentin (Kleter 
et  al. 1998). AGEs like CML get accumulated in dentin 
physiologically, which can be used for analysis (Miura 
et  al. 2014). Pentosidine levels in root dentin (including 
healthy, diabetic, stored, and heated root dentin) can be 
quantified and used for age estimation. Heated and cari-
ous teeth show high levels of pentosidine (Greis et  al. 
2018). In cases of long post-depositional intervals, pen-
tosidine levels remain stable in the dentinal collagen. It 



Page 5 of 8Pillalamarri et al. Egyptian Journal of Forensic Sciences            (2022) 12:2 	

is assumed that the glycation-based changes stabilize 
the affected region and protect it from degradation. In 
a recently conducted study on archaeological samples, 
results have shown that the age estimation by measuring 
the pentosidine levels has proven to be more accurate in 
comparison to D-Asp (Mahlke et al. 2021).

The advanced glycation-end products can be analyzed 
using fluorescence spectroscopy, mechanical indentation 
analysis, immunohistochemical staining, and immune-
electron microscopy (Miura et al. 2014), HPLC (Requena 
et  al. 2003), gas chromatography-mass spectroscopy 
(GC-MS), and enzyme-linked immunosorbent assay 
(ELISA). However, various factors influence the accumu-
lation of these products. Elevated blood glucose levels 
may lead to increased production of AGEs, which can be 
analyzed from tissues like the skin collagen, blood vessel 
walls, and interstitial connective tissue. Therefore, indi-
viduals with diabetes can give false high age estimates. 
Also, caries-affected teeth show higher values of pentosi-
dine. More standardization is necessary for such samples.

Lead accumulation
Lead is considered as one of the most significant pollut-
ants in the environment. The major sources of lead are 
through the industrial complexes that release lead into 

the environment through drinking water, fumes from car 
exhausts where leaded petrol is still in use, lead contain-
ing paints, leaded water pipes, and from traffic.

About 90% of lead is accumulated in the bones. The 
teeth, blood, and other soft tissues also contain consid-
erable amount of lead which progressively increases with 
age. However, the blood lead levels are instantaneous, 
which reflect an immediate lead exposure (Steenhout and 
Pourtois 1981). In the bone, it is removed over time due 
to its remodeling, but in the teeth, once deposited, it can-
not be removed as there is no turnover of apatite. There-
fore, the teeth are the most suitable material for studying 
total past lead exposure (Grobler et al. 2000).

The concentration of lead has been used to study the 
pollutant levels primarily. However, lead levels in the 
teeth can also be utilized to analyze an individual’s age 
due to its progressive accumulation (Bercovitz and 
Laufer 1991). In the teeth, dentin has been identified as 
the leading site for lead accumulation as compared with 
enamel (Gulson and Gillings 1997). A significant cor-
relation between dentine lead levels and age was found 
in the Kuwaiti population and the difference between 
the real age and calculated age was 1.3 + 4.8 years 
(Al-Qattan and Elfawal 2010). The lead is separated 
using anion exchange chromatography and measured 

Fig. 2  Formation of advanced glycation-end products
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using mass spectrophotometry, and atomic absorption 
spectrophotometry.

It is essential to note that the atmospheric lead levels 
influence the amount accumulated, making it popula-
tion and region-specific. It may therefore be inapplicable 
as a generalized method for age estimation. Although if 
region-specific lead levels can be determined and corre-
lated with age, this method can be employed.

Mitochondrial DNA
Mitochondrial DNA is present near the inner membrane 
of the mitochondria and is influenced by the presence 
of free radicals which accumulate with age. As stated by 
Harman in the theory of aging, the production of free 
radicals increases with age. This can be explained as an 
imbalance between pro-oxidants and anti-oxidants (Har-
man 1956). During the breakdown of enzymes in mito-
chondria, reactive oxygen species are produced. These 
cause damage to proteins, nucleic acids, and phospholip-
ids. This leads to the synthesis of functionally impaired 
respiratory sub-units, causing mitochondrial DNA 
mutations that get accumulated with age and cause 
degenerative diseases (Horan et al. 2012). Such somatic, 
age-related mitochondrial DNA mutations may cause 
inefficient cell function, leading to several clinical mani-
festations, including renal dysfunction, cardiomyopathy, 
and neurological diseases (Papiha et  al. 1998). Several 
studies have found a relation between mtDNA muta-
tions and aging in tissues like the brain, skeletal muscle 
(Liu et al. 1998), and heart (Corral-Debrinski et al. 1992; 
Cortopassi et  al. 1992). A semiquantitative PCR con-
ducted on dentin and pulp of third molars demonstrated 
a decrease in the quantity of mtDNA with age (Mörnstad 
et al. 1999). In addition, a strong linear negative correla-
tion has been seen between the amplification of mtDNA 
and dentin age using real-time PCR in third molars 
(Zapico and Ubelaker 2016).

The mtDNA damage is measured using real-time PCR. 
The process, however, is time-consuming, expensive, and 
technique-sensitive. The forensic implications of this 
method still need to be standardized for practical appli-
cations. The relation between the mutations and aging 
needs further evaluation for better applications in ances-
try studies and to estimate age at death.

Conclusions
Among the above chemical methods, the most precise 
method is the racemization of the aspartic acid. Research 
for the standardization of sample collection, accuracy, 
and method reliability has been conducted in different 
parts of the world. The main advantage of using AAR 
is that the sample can be collected from tissues most 
protected from environmental and nutritional factors 

(teeth). If all the confounding factors are stable, the utili-
zation of AGE products can also be considered valuable. 
However, these methods require studies focusing on pro-
viding a more standardized method. It is indispensable to 
note that all the above methods are invasive and involve 
the entire tooth destruction.
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